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Executive Summary

This report describes requirements, approaches, concrete interfaces, protocols, and verification
methods for managing secure and trustworthy cloud resources according to the TClouds ap-
proach.

Security management spans a variety of different approaches. On the one hand, new mech-
anisms are proposed here that exploit distinctive features of securely managing cloud resources
such as to result in an overall increased level of trustworthiness. This is coupled with protocols
for managing encryption keys for cloud storage. Encryption is an established technique for
protecting data stored in the cloud, but its usability hinges critically on making the necessary
encryption and decryption keys available to the involved parties in a secure way. This report
proposes a novel architecture and novel solutions for managing keys in IaaS clouds providing
access to virtual machines, with their virtual disk images encrypted by keys stored at clients.

In order to automate management of cloud resources in a heterogeneous cloud-of-clouds
environment, it is necessary to use a common language across different service providers. In
this scenario, ontologies offer a suitable tool for describing the various resources. Since they
are formally defined, one can exploit this to infer security properties through automatic rea-
soning. This report, furthermore, proposes novel ontologies suitable for managing secure and
trustworthy cloud computing systems.

One important goal of cloud-infrastructure management is to prevent information leakage
between different domains (e.g., tenants or legally separated entities). As another goal, this
report shows how to automate an information-flow analysis for large-scale heterogeneous virtu-
alized infrastructures. This work aims at reducing the apparent complexity for human adminis-
trators, who should implement a complex system following defined trust assumptions, through
automatic tool-based analysis of information properties in the running system.
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Chapter 1

Overview of Security Management

Chapter Authors:
Christian Cachin (IBM)

1.1 Introduction
Cloud computing systems must be managed like any other IT system. In the cloud computing
model, a client accesses the resources of a provider. The provider takes care of managing the
resources and allocating them to clients. Due to the nature of the resources that are shared, the
management functions in these environments differ from those found in traditional IT systems
in several ways.

A novel aspect in infrastructure (or platform) management for cloud computing lies in the
shared responsibility between provider and client for the system. Whereas traditionally one en-
tity was largely responsible for all aspects, including security, this responsibility is now shared.
A clearly defined separation of the respective tasks is required. A second novel aspect is the
sharing of infrastructure resources among multiple clients, usually called tenants in this context.

Separating between client-managed and provider-managed operations is crucial also for se-
curity management. The introduction of cloud computing breaks up the previously well-defined
boundaries of the client infrastructure. For example, IT resources from a potentially untrusted
provider in the cloud are now consumed instead of resources produced in-house.

Since cloud computing provides virtualized resources, it is much easier to allocate them than
it is to allocate physical resources. This can lead to a much faster introduction and adoption of
such resources than previously. Obviously, the low cost of cloud-provided resources is one of
the most interesting features of cloud computing. But its ease-of-use also leads to widespread
uncontrolled proliferation of resources and overly complex infrastructures, and clients have had
difficulty in the past to control their virtual inventory (as characterized by the buzzword “virtual
machine sprawl”).

1.2 Classification
This report describes requirements, analysis, and design of security management functions for
trustworthy cloud computing. According to the general taxonomy of Avizienis et al. [ALRL04],
the methods for building dependable (i.e., secure and resilient) systems can be grouped into

• prevention mechanisms;

• tolerance mechanisms;

TClouds D2.3.1 Page 1 of 89
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• removal mechanisms; and

• forecasting mechanisms.

Prevention and tolerance mechanisms aim to provide the ability to deliver a service that can be
trusted, while removal and forecasting mechanisms are applied after an incident occurred and
aim to reach confidence in that ability by justifying that the functional and the dependability
and security specifications are adequate and that the system is likely to meet them.

The approaches described in this report qualify mainly as prevention mechanisms, whose
goal is to manage secure, dependable, and trustworthy cloud infrastructures. Some technolo-
gies, notably those related to the formal verification of security properties, serve as prerequisites
to removal mechanisms and as forecasting mechanisms.

1.3 Structure

Chapter 2 contains information about the configuration data needed for the components of the
TClouds integrated platform prototype. Whereas the TClouds prototype is the subject of WP 2.4
and the corresponding deliverable D2.4.1, this chapter contains an overview of all configuration
data relevant for managing the prototype components.

Chapter 3 describes the steps involved to manage the special, tailored Cloud infrastructure
components provided by WP 2.1. The goal of this management mechanism is to gather expected
usage patterns from applications that want to access certain services and to translate those into
a set of actions that need to be carried out in order to provide the requested service. Unfortu-
nately, information regarding service usage is mostly specific to the respective type of service
and has to be combined with knowledge about the resource consumption in terms of low-level
infrastructure for each tangible service implementation to become useful. The management
system described in this chapter is designed to close this gap and derive a set of actions to set
up the service components with the desired properties. The actual execution of the steps is left
to lower-level infrastructure management already available from most IaaS Cloud providers,
except for the interactions with the setup procedure for the tailoring process of the WP 2.1
components.

Chapter 4 presents the design of several self-managed services, whose purpose is to manage
the migration of resources inside and across clouds. Self-managed services provide automated
capabilities and may act autonomously; such systems have also been called autonomic systems.
They are an attractive model for building trustworthy cloud services. The chapter focuses on
the security and privacy aspects of self-managed services, and furthermore on their availability
and resilience features.

Chapter 5 addresses key management for cloud storage. It presents a novel approach to
manage encryption keys for storage resources, such as virtual disks, which are accessed by
virtual machines running at a cloud provider. Virtual machines are represented as images and
stored by a cloud storage service. As demonstrated there, existing technology does not permit
that an image is encrypted with a client-managed encryption key, which would prevent the
provider from snooping on the image’s internals. The method described in this chapter enables
this by adding a key-management interface to the virtual machine hosting platform, such that
the client may submit encryption keys through a security proxy exactly at the time when the
decryption key for an image is needed. At any other time, the image is stored in encrypted form
and the cloud provider has no access to the data in the image.
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Chapter 6 describes the key management mechanisms within trusted infrastructures as de-
veloped in WP 2.1. A central management component is in charge to manage all security
aspects of the managed appliances. The management system and concepts described in this
chapter build on top of a Trusted Computing infrastructure and provide a seamless integration
of cloud resources with on-premise resources of cloud customers.

In Chapter 7, a semantic model of IT and cloud infrastructures is developed, which repre-
sents a crucial prerequisite for their automated analysis. Using an ontology-driven approach,
the chapter provides an analysis and a logical model of a large-scale IT system. The ontology
differentiates between (1) the physical layer, where hardware resources are modeled, (2) the
virtual layer, which includes coarse-grained virtualized resources such as otherwise available in
hardware form, (3) the software layer containing the basic software components like operating
systems and DBMS, and (4) the service layer, which models applications. Last but not least, a
security layer (5) is also described, which is composed of non-functional properties, which is
orthogonal to the four infrastructure layers.

Chapter 8 tackles the complexity of virtualized environments by formal verification of se-
curity properties. In a multi-tenant infrastructure, where resources can be attributed to multiple
entities from different security domains, realizing proper isolation mechanisms between the se-
curity domains poses a challenge. The design described here proposes a high-level approach
for automated discovery of potential information flow between security domains. The resulting
flow graph allows for simplified verification of the isolation requirements imposed by a security
policy. The chapter also reports about the development of an analysis tool and presents some
results from an early case-study done on a mid-sized infrastructure of a production environment
in the financial sector.
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Chapter 2

Configuration Data Overview

Chapter Authors:
All contributors

2.1 Introduction
This chapter describes information about the configuration data needed for the components of
the TClouds integrated platform prototype. The TClouds prototype is the subject of WP 2.4 and
the corresponding deliverables. This chapter merely contains an overview of all configuration
data relevant for managing the prototype components, since these data are relevant for this
report, addressing the design of security management.

The prototype is structured into three broad groups of components:

1. Trustworthy cloud infrastructure: these components are the subject of WP 2.1.

2. Cloud of Clouds Middleware for Adaptive Resilience: these components are the sub-
ject of WP 2.2.

3. Cross-layer Security and Privacy Management: these components are the subject of
WP 2.3 and further described in this report.

The rest of this chapter is structured along these component groups. For each component,
we collect the management aspects of the components contributed by the partners. For each
component the following questions are answered:

• Which configuration data (including cryptographic keys) is needed by the component to
run?

– Requirements on the confidentiality of the data (e.g. for keys) during runtime / at
rest.

– Where is the data deployed (during runtime of the component), e.g. inside the VM,
inside the OS / Hypervisor, in the Cloud Framework (e.g. OpenStack Management).

– Where should the data be kept when the instance is not running?

• Who is responsible for the configuration: cloud infrastructure manager, cloud customer
admin, cloud user?

• How is the component being deployed / instantiated?
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• Further requirements?

For management components:

• What are they capable of managing?

• Is there a temporary / permanent uni or bidirectional connection to the managed compo-
nent?

• Further requirements?

2.2 Components of WP 2.1

2.2.1 Logging as a Service (LaaS)
• Which configuration data (including cryptographic keys) is needed by the component to

run?

– On the LaaS:

∗ URL of S3 persistent storage.
∗ optionally, parameters for (Byzantine) fault tolerance, in case we replicate LaaS

VM.
∗ Log configuration and policy.
∗ List of log users and relative keys (public keys).
∗ Initial key for log integrity (A0).

– On each cloud component, within the LaaS library which is part of the Cloud Frame-
work:

∗ URL of LaaS VM.
∗ Log configuration.
∗ List of users allowed to read the logs created by the cloud component with

relative keys (subset of public keys).
∗ Current key for log integrity (Ai).

– On User’s management console:

∗ URL of LaaS.
∗ User’s decryption keys.

• Requirements on the confidentiality of the data (e.g. for keys) during runtime / at rest:

– Initial key for log integrity (A0) must be kept confidential and must be confined to
the LaaS component.

– Current key for log integrity (Ai) must evolve over time on each cloud component
(e.g. by using one-way functions). As soon as Ai evolves, the old one is destroyed.

– User’s decryption keys must be kept encrypted while not used. When used, they
are decrypted and revealed only to the management console. Decrypted User’s key
must be used as little as possible and destroyed immediately after usage.
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– All the configuration of the logs, both on LaaS and on the cloud components can be
public.

• Where is the data deployed (during runtime of the component), e.g. inside the VM, inside
the OS / Hypervisor, in the Cloud Framework (e.g. OpenStack Management)?

– A0 in the OS of the LaaS component.

– Ai in the Cloud Framework of each cloud component.

– User’s decryption keys on the management console.

• Where should the data be kept when the instance is not running?

– A0 must be in the OS of the LaaS component which is never stopped.

– Ai must be in the Cloud Framework of each cloud component which is never stopped.
In case of stop of the cloud component (e.g. for maintenance), Ai is destroyed and
a new key is negotiated at reboot.

– User’s decryption keys are managed by the user.

• Who is responsible for the configuration: cloud infrastructure manager, cloud customer
admin, cloud user?

– LaaS overall configuration managed by cloud infrastructure manager.

– each log may be configured by the user of the log. Possibly some legal constraints
may be applied (e.g. minimal or maximal duration of a log).

• How is the component being deployed / instantiated?

– LaaS is always running.

– each cloud component is provided (in Dom0) with the log library.

• Further requirements? None.

2.2.2 Trusted Server
• Which configuration data (including cryptographic keys) is needed by the component to

run?

– Connection information to the Trusted Object Manager (TOM), which is managing
the TrustedServer, this includes credentials for the TrustedChannel communication
(confidential).

• Where is the data deployed (during runtime of the component), e.g. inside the VM, inside
the OS / Hypervisor, in the Cloud Framework (e.g. OpenStack Management)?

– Host OS.

• Where should the data be kept when the instance is not running?

– The data is stored on an encrypted partition on the disk of the TrustedServer. Disk
encryption is protected by the TPM.
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• Who is responsible for the configuration: cloud infrastructure manager, cloud customer
admin, cloud user?

– Cloud infrastructure manager.

• How is the component being deployed / instantiated?

– When the TrustedServer is installed the data is deployed on the disk. Note that TOM
uses remote attestation to ensure the Integrity of the TrustedServer.

2.2.3 Secure Block Storage (SBS)
Note: Here, we ignore the case of public clouds, in which the SBS has to be part of the client’s
VM, and focus on the TClouds demo where SBS is part of the cloud infrastructure!

• Which configuration data (including cryptographic keys) is needed by the component to
run?

– Cryptographic keys supplied by the client via the API.

– Configuration data and credentials to assign the above mentioned keys to the corre-
sponding client and to authenticate the client.

• Requirements on the confidentiality of the data (e.g. for keys) during run-time/at rest?

– Both the configuration data/credentials and the storage keys have to be kept confi-
dential.

• Where is the data deployed (during runtime of the component), e.g. inside the VM, inside
the OS / Hypervisor, in the Cloud Framework (e.g. OpenStack Management)?

– Ideally in an isolated environment (from the hypervisor/kernel), but for implemen-
tation practicability inside a security hypervisor.

• Where should the data be kept when the instance is not running?

– It can be sealed and stored on persistent storage (e.g., by TPM), such that only
the legitimate, trusted hypervisor (or code in a trusted execution environment) can
unseal it. Alternatively, it can be securely wiped and re-provisioned on next demand.

• Who is responsible for the configuration: cloud infrastructure manager, cloud customer
admin, cloud user?

– Cloud infrastructure manager has to deploy the component.

– Provisioning of storage keys is handled by the cloud user/admin via an API in Open-
Stack.

• How is the component being deployed / instantiated?

– When the server/hypervisor is set up, the component is deployed and instantiated.
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2.2.4 Secure VM Images
Identically to SBS, with the only difference that cloud users/admins can provision/retrieve en-
crypted VM images (via new interfaces in OpenStack). Images are decrypted on-the-fly, based
on the SBS component, during image execution. The extension to SBS for that purpose has to
be tightly integrated in the secure hypervisor or must be a highly efficient (in terms of perfor-
mance) secure environment.

2.2.5 High Availability Basics
Same as the one described in section 2.4.1

2.2.6 Resource-efficient BFT (CheapBFT)
• Which configuration data (including cryptographic keys) is needed by the component to

run?

1. Secret keys and tamper-proof counter state for signing messages on the FPGA board.

2. Addresses, ports, and keys of other replicas in the cluster.

• Requirements on the confidentiality of the data (e.g. for keys) during runtime/at rest?

1. Signing keys must stay confidential, either by shipping pre-configured FPGA boards
to the cloud provider, or going through a setup procedure in a trustworthy environ-
ment to install the keys.

• Where is the data deployed (during runtime of the component)

1. Location of other hosts in the cluster stored inside the VM.

2. Secret keys are deployed on the FPGA boards.

• Where should the data be kept when the instance is not running?

Secret keys and counters must stay on the FPGA boards. Addresses of other replicas
statically stored on the disk image for the VM or configured at startup.

• Who is responsible for the configuration?

1. User of the service generates and installs keys.

2. Static placement by user or management infrastructure responsible for dynamic al-
location of replicas.

2.2.7 Simple Key/Value Store
• Which configuration data (including cryptographic keys) is needed by the component to

run?

1. Access policies (based on IP address, shared secret, . . . ).

2. Storage size.

3. Feature subset configuration: Encryption, persistent storage, synchronization.
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4. Addresses, ports, and keys of other replicas in the cluster.

• Requirements on the confidentiality of the data (e.g. for keys) during runtime/at rest?

1. Shared secrets and encryption keys must be transmitted securely.

2. Cloud provider should not be able to intercept/steal secrets from the VM.

• Where is the data deployed (during runtime of the component)

1. Inside the VM.

• Where should the data be kept when the instance is not running?

Depends on the persistence level required. If the key/value store is merely used as a cache,
there is usually no need to keep any data. Otherwise the configuration should be kept in
the management layer.

• Who is responsible for the configuration?

1. User of the service configures access policies, keys and required features.

2. Management infrastructure responsible for coordination of related hosts.

2.3 Components of WP 2.2

2.3.1 Storage Cloud-of-clouds
The system accesses n cloud providers assuming that at most f of them can be malicious. The
idea is to trust none of them completely.

The component runs at the client side (not on the cloud).

• Which configuration data (including cryptographic keys) is needed by the component to
run?

– Credentials for the n cloud providers (confidential).

– It is also necessary to define the access control for reading and writing data units,
but it’s still an open problem how to configure several clouds using the same policy
in a simple way.

• Where is the data deployed (during runtime of the component), e.g. inside the VM, inside
the OS / Hypervisor, in the Cloud Framework (e.g. OpenStack Management)?

– At the client process accessing the storage system.

• Where should the data be kept when the instance is not running?

– In a digital wallet that can be accessed by the client process when using the storage
service. Another option is to give a password to the system user that can be used to
derive all these credentials and access the system.

• Who is responsible for the configuration: cloud infrastructure manager, cloud customer
admin, cloud user?
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– The cloud customer setting up the system.

• How is the component being deployed / instantiated?

– It is an infrastructure service that can run at cloud custumers side or inside of a
trusted cloud to make use of a set of unstrusted storage clouds for its storage ser-
vices.

We think there are important research questions about the configuration of a cloud-of-clouds
service (too many third-party services to configure consistently) that need to be answered.

2.3.2 Confidentiality Proxy for S3

• Which configuration data (including cryptographic keys) is needed by the component to
run?

– Credentials for the S3 provider (confidential).

– Encryption key for the TVD (confidential).

– Mount information: mapping of S3 file system on host OS to shared folder in the
VM (public).

• Where is the data deployed (during runtime of the component), e.g. inside the VM, inside
the OS / Hypervisor, in the Cloud Framework (e.g. OpenStack Management)?

– Host OS.

• Where should the data be kept when the instance is not running?

– Management component (TOM).

• Who is responsible for the configuration: cloud infrastructure manager, cloud customer
admin, cloud user?

– Cloud customer administrator: S3 credentials, mount point inside the VM.

– TOM: TVD key, mount point host.

• How is the component being deployed / instantiated?

– The component has a service component on the host (TrustedServer) and a manage-
ment component inside of TOM. Communication between both is across the Trust-
edChannel. When a VM is started via TOM on the TrustedServer the configuration
is transferred via the TrustedChannel to the TrustedServer and handled accordingly
by the service component.
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2.3.3 Fault-tolerant Workflow Execution (flexible FT-BPEL)
• Which configuration data (including cryptographic keys) is needed by the component to

run?

1. Zookeeper instance to use for service coordination.

2. BPEL engine scripts/settings.

3. Auxiliary web service addresses.

• Requirements on the confidentiality of the data (e.g. for keys) during runtime/at rest?

1. Connecting to Zookeeper may be protected with a shared secret key that must not
leak to any 3rd party.

2. The BPEL engine scripts may contain additional secret information, depending on
the application scenario.

• Where is the data deployed (during runtime of the component)

1. Inside the VM.

• Where should the data be kept when the instance is not running?

Basic configuration data is saved on the virtual disk images from which the enhanced
BPEL engine is started from. Other information that may change (i.e. Zookeeper in-
stances, scripts) could be supplied by the user or the cloud management infrastructure on
startup.

• Who is responsible for the configuration?

1. User of the service provides all necessary configuration, but may rely on information
from the management infrastructure.

2.3.4 Extensible Coordination Service (flexible Zookeeper)
• Which configuration data (including cryptographic keys) is needed by the component to

run?

1. Access policies by IP address and/or shared secret.

2. Addresses, ports, and keys of other Zookeeper nodes.

• Requirements on the confidentiality of the data (e.g. for keys) during runtime/at rest?

1. Shared secrets and access policies must be transmitted and installed in a secure
fashion.

2. Cloud provider should not be able to intercept/steal secrets from the VM.

• Where is the data deployed (during runtime of the component)

1. Inside the VM.

TClouds D2.3.1 Page 11 of 89



D2.3.1 – Requirements, Analysis, and Design of Security Management

• Where should the data be kept when the instance is not running?

The configuration data is stored on the disk image from which Zookeeper is supposed to
run or set by the user/service provider immediately before starting the instance.

• Who is responsible for the configuration?

1. User of the service configures access policies and secrets.

2. Static configuration of Zookeeper nodes by user or cloud service provider.

2.3.5 State Machine Replication as a Cloud-of-cloud PaaS
The configuration bellow assumes a solution without trusted components, for being deployed
on untrusted clouds.

• Which configuration data (including cryptographic keys) is needed by the component to
run?

1. Addresses of each of the n replicas.

2. Each replica requires at least one text-based configuration file.

3. Each of the n replicas and clients should have a unique private key with them.

4. Every client and replica needs to have access to the public-keys of all replicas.

• Requirements on the confidentiality of the data (e.g. for keys) during runtime/at rest?

1. All private keys should be maintained confidential.

• Where is the data deployed (during runtime of the component)

1. On the hosts where the replicas are running.

• Where should the data be kept when the instance is not running?

Inside of the virtual machine image. Maybe protected in a digital wallet that can only be
oppened with a password or key presented by the administrator during system activation.

• Who is responsible for the configuration?

1. Owner of the service deployed on the cloud.

2.4 Components of WP 2.3

2.4.1 Access Control
• Which configuration data (including cryptographic keys) is needed by the component to

run?

1. Cryptographic keys.

2. Access right policy (as defined by cloud user).

3. Infrastructure policy and properties as defined by cloud architects.
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• Requirements on the confidentiality of the data (e.g. for keys) during runtime / at rest?

1. The keys must be securely protected; even cloud internal employees should not be
capable of accessing the keys.

2. The integrity of access rights’ policy should be protected.

• Where is the data deployed (during runtime of the component), e.g. inside the VM, inside
the OS / Hypervisor, in the Cloud Framework (e.g. OpenStack Management)?

Access rights will be enforced at three levels:

1. Inside the VM, when processed by business logic application.

2. Any action on VM must be validated. Such validation is part of OpenStack.

3. Outside the cloud at client workstation after downloading data from the cloud.

• Where should the data be kept when the instance is not running?

The data should be kept somewhere secure in the cloud (e.g. encrypted inside a storage
accessible to the VM).

• Who is responsible for the configuration: cloud infrastructure manager, cloud customer
admin, cloud user?

This can be split at three parts:

1. Cloud user will define application access rights.

2. Cloud user’s customer will also define access rights related to his data.

3. Cloud admin will define infrastructure policy and properties.

We will build automated services that enforces such access rights at the levels defined
above.

• What are you capable of managing?

Access Rights on VM level (to be built part of OpenStack), and on Data level both when
accessed inside the cloud and at outside the cloud at client devices).

• Is there a temporary/permanent uni or bidirectional connection to the managed compo-
nent?

A bidirectional connection with the managed component.

2.4.2 Self-Managed Support Services
• Which configuration data (including cryptographic keys) is needed by the component to

run?

1. Cryptographic keys.

• Requirements on the confidentiality of the data (e.g. for keys) during runtime / at rest?

1. The keys must be securely protected; even cloud internal employees should not be
capable of accessing the keys.
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• Where is the data deployed (during runtime of the component), e.g. inside the VM, inside
the OS / Hypervisor, in the Cloud Framework (e.g. OpenStack Management)?

Inside the VM.

• Where should the data be kept when the instance is not running?

The data should be kept in the VM.

• Who is responsible for the configuration: cloud infrastructure manager, cloud customer
admin, cloud user?

Cloud user will define access rights

• What are you capable of managing?

Running processes inside a VM.

• Is there a temporary/permanent uni or bidirectional connection to the managed compo-
nent?

Bidirectional connection with the managed component.

2.4.3 Ontology-based Reasoner to Check TVD Isolation
• Which configuration data (including cryptographic keys) is needed by the component to

run?

1. The core ontology (classes and properties).

2. The system model (i.e. individuals in the ontology).

• Requirements on the confidentiality of the data (e.g. for keys) during runtime / at rest?

1. The core ontology is public.

2. The system model is private (known by the Cloud Provider/Infrastructure).

• Where is the data deployed (during runtime of the component), e.g. inside the VM, inside
the OS / Hypervisor, in the Cloud Framework (e.g. OpenStack Management)?

1. The core ontology is built-in in the component.

2. The system model is dynamically acquired from the infrastructure components (e.g.
via queries to libvirt).

Note: we assume that the component is always running.

• Who is responsible for the configuration: cloud infrastructure manager, cloud customer
admin, cloud user?

1. We assume that, for the demo, the configuration is fixed and decided a-priori. We
do not expect that any entity can change the configuration, i.e. the core ontology.
More generally:

(a) The cloud infrastructure manager may modify (parts of) the core ontology, for
instance to specify default policies/assumptions (e.g., he can decide wether by
default a L2 link is considered secure or not).
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(b) Similarly, the cloud customer admin may request analysis with slightly different
models.

• What are you capable of managing?

1. For the demo, check isolation of TVDs. In more detail, we extend the deployment of
a new VM by setting up secure channels among physical nodes, such that the com-
munications intra-TVD that go over the physical network result protected. More in
general, i.e. other than the demo, we are capable of checking security properties
based on ontology reasoning (e.g., verify if two components can securely commu-
nicate, list possible threats to an asset . . . ).

• Is there a temporary/permanent uni or bidirectional connection to the managed compo-
nent?

1. No network connections. This component will be integrated in the management
component as a library/plugin.

2.4.4 Trusted Objects Manager (TOM)
• What are you capable of managing?

– TrustedServer (managing VMs and TVDs).

– Secure S3 proxy.

– Other appliances provided by Sirrix (TrustedVPN, TrustedDesktop, etc.).

– Other TClouds components, if necessary.

• Is there a temporary / permanent uni or bidirectional connection to the managed compo-
nent?

– Yes. The default is a permanent bidirectional connection. But depending on the
appliance this can be customiized.

2.4.5 Trusted Management Channel
See Sections 2.4.4 and 2.2.2.

2.4.6 Automated Audit System
• Which configuration data (including cryptographic keys) is needed by the component to

run?

– Discovery data of cloud infrastructure.

– Policy specification.

• Requirements on the confidentiality of the data (e.g. for keys) during runtime / at rest?

– Discovery data should not be accessible by any cloud consumer.
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• Where is the data deployed (during runtime of the component), e.g. inside the VM, inside
the OS / Hypervisor, in the Cloud Framework (e.g. OpenStack Management)?

– Depending on deployment strategy: Either inside VM or in the Cloud Framework.

• Where should the data be kept when the instance is not running?

– Not necessary. Discovery data can be obtained again by performing the discovery,
and policy specification is given for each audit.

• Who is responsible for the configuration: cloud infrastructure manager, cloud customer
admin, cloud user?

– Cloud infrastructure manager should provide mechanism to obtain discovery data.

– Cloud customer admin can validate that customers are correctly isolated from each
other.

– Optionally, the cloud user can validate the isolation of his part of the infrastructure.

• How is the component being deployed / instantiated?

– The audit tool can either be deployed inside a VM, which then receives commands
from the central management API server, or is closely integrated with the manage-
ment API server.

• What are you capable of managing?

– We manage the correct isolation of tenants in a cloud infrastructure by performing
audits of the infrastructure against an isolation policy.

• Is there a temporary/permanent uni or bidirectional connection to the managed compo-
nent?

– Temporary bidirectional connection: Audit API call will audit the infrastructure
with regard to a given policy specification and will determine policy compliance or
violation. A report will be provided in case of policy violation.

• Further requirements?

– None.
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Chapter 3

Management of Tailored Cloud Components

Chapter Authors:
Johannes Behl, Rüdiger Kapitza, Klaus Stengel (FAU)

3.1 Introduction
Todays cloud computing infrastructures are more than just providers for virtual machines and
network connections. Apart from the very essential virtual counterparts of common computing
infrastructure, many small additional services are commonly offered by cloud providers, which
are supposed to aid development and provision of scalable applications. Typical examples for
such services range from all types of simple storage facilities to coordination services and load
balancing. Those services are usually accessible using HTTP-based protocols and are entirely
managed by the cloud provider. From a user’s perspective, their main advantage is that they are
easy to incorporate into cloud-based applications and don’t cause any administrative overhead.
However, there are also numerous downsides to those services, not only from a user’s perspec-
tive. This chapter provides an overview of an alternative approach to provide simple back-end
services in cloud environments.

First of all, the interfaces for these kinds of services are hardly standardized, which makes it
difficult to move applications to different cloud providers (i.e. ”Vendor Lock-in”). Additionally,
it’s very hard to judge the security and reliability implications of using such a service, because
the implementation details and information about the hosting environment are usually entirely
opaque. The user often has to rely solely on the assertions made by the cloud provider.

On the part of the cloud provider, offering those services require additional infrastructure
for their management. As those services are also separately billed on a pay-as-you-use basis,
they require close monitoring of each user’s actions. Only this kind of tracing allows for fair
accounting, because the individual functions offered by a service are used at varying frequencies
and put different strain on the hardware components. On top of that, it’s also the provider’s
responsibility to decide, how much of the available physical hardware should be dedicated to
the IaaS or the miscellaneous service offers.

Due to the obstacles explained in the previous paragraphs, we want to experiment with a
different approach for providing those services. The basic idea is to leverage the existing IaaS
platform to run the necessary software components, either by the cloud provider or the customer
that wants to use the service. The required components are just provided like any other virtual
machine image at the provider. This has the following advantages:

• For the cloud user the whole process required to operate the service becomes transparent
to the user. All data is guaranteed to be stored in separated virtual machines, thus pro-
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vides better isolation from other customers. It becomes possible to transfer the images to
other cloud providers and run the same service with the same programming interfaces at
different providers without any porting effort.

• From the provider’s perspective, there is no longer any need to monitor the behaviour of
the customer’s applications, because the billing process can simply happen on a per-VM
basis. All physical hardware can be managed by the same IaaS platform and can provide
the additional services on demand.

In order to make this work, there are some additional measures required to ensure that the
components do not cause increased costs by unnecessarily occupying resources on the IaaS
level. To meet this goal, we first reduce the constant costs of running such services by removing
most overhead in a special tailoring process, which is the topic of a corresponding component
of WP 2.1. Furthermore, we also need a way to continously capture the resource requirements
of an application in order to estimate and provision the required infrastructure, which is the
topic that will be covered here.

The rest of this chapter is organized as follows: We start with a short explanation of how
the tailored cloud services we proposed in WP 2.1 operate. In the next section we give a short
summary of the required management tasks involved and what the main challenges are. Finally,
we propose a possible way to achieve a fully automated solution.

3.2 Tailored Cloud Services
In WP 2.1 a method to strip down simple web service Applications to run on commodity cloud
infrastructure without much overhead is proposed. The basic procedure for using such a service
involves the following steps:

1. The application is packaged together with a generic runtime environment and distributed
in form of an VM image to the cloud provider(s) the service is supposed to be hosted at.

2. When starting the virtual machine, the common runtime system gathers information about
the cloud platform it is running on and waits for additional parameters for the tailoring
process.

3. When the all required parameters for the service instance are available, the tailoring pro-
cess begins and produces program code that is optimized for the execution environment
and the specified usage parameters.

4. The common runtime is replaced with the service program from the previous step and
provides the requested service.

The whole process is designed to eliminate as much unnecessary parts from a web service as
possible. It is common practice nowadays to run an entire Java VM, based on a commodity OS,
e.g. Linux, on the virtual machines hosted at the cloud provider. This is very wasteful, because it
requires about 150 MB of RAM just for the basic execution environment. Instead, we statically
link the application with a runtime system specially designed to run on top of virtual machines,
and remove any parts of the runtime not necessary for the particular web service. Our tailoring
solution is expected to reduce the required overhead to a few megabytes at most. This allows
the memory otherwise consumed by unnecessary parts of the runtime system to be used for the
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Figure 3.1: Tailored components and IaaS architecture

web service itself. So it becomes possible to use smaller and cheaper VM instances to store the
same amount of data compared to the systems currently in use.

Besides the improvements regarding resource consumption, we also expect an improvement
in the reliability aspects of the resulting service; Since the tailored service contains less layers
of indirection in the software stack and the overall amount of active code in the system is much
smaller, there are less possibilities for running into misbehaving code. The tailoring aspect also
adds a certain amount of variability to the system, which means that a dedicated attacker who
tried to exploit a certain error in the runtime system has less chances to succeed on multiple
instances of the service at once.

Even if an instance of a tailored service was compromised, the attacker is still confined to the
virtual machine environment. As outlined in the previous chapter, each VM is ideally dedicated
to a single customer and therefore is expected to providing better isolation than hosting multiple
instances on the same commodity operating system. This is supported by the fact that the
interface to the VM environment has much fewer functions than common operating systems
and thus is generally easier to secure.

As outlined in the required setup procedure, the tailoring aspects require knowledge of cer-
tain parameters about the environment in which the final service should be executed. While
the VM execution environment can be examined by the runtime system on its own, all other
parameters must be specified externally. This leads to the next section and main topic of this
chapter, where the challenges regarding the deployment and administration of such services are
analyzed and discussed.

3.3 Administrative Task Challenges

The primary issues that need to be addressed, in order to make these tailored components as
easy to use as the services already offered by commodity cloud providers, are of administrative
nature. While the existing services can just be used as required and the cloud provider is entirely
responsible for the management aspects, they now become transparent to the user.

In fact, the instantiation of the tailored service components may even require more effort by
the administrator compared to traditional operating systems, caused by the parameters necessary
for the tailoring process. This is generally undesirable in a large scale cloud scenario, where
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everything has to be automated as much as possible to stay manageable.
Moreover, we also have to deal with dynamic changes regarding the utilization of VM re-

sources. If we run the component on top of an ordinary IaaS platform, any unused capacities
occupied by the VM hosting the service can’t be reused by other VMs. This increases costs,
either because the user has to pay more than necessary for his VM instances, or because the
cloud provider is no longer able to reach optimal utilization of the available hardware resources.
While there are known techniques, like memory balooning or CPU hotplugging, which could
be used for dynamic reallocation of resources, these aren’t widely supported across common
cloud providers. Therefore it’s currently not possible to rely on these mechanisms, especially
in case of multi-cloud scenarios, so we also need alternative ways to provide scalability.

Therefore we need to investigate how to eliminate the administrative overhead by looking
at each involved party and provide an algorithm to make the setup and scaling process fully
automatic from a user’s viewpoint. The layer overview in Figure 3.1 shows the general archi-
tecture of an application using our tailored components in the cloud. On the very bottom of
the architecture are the physical hosts which represent the necessary hardware to run the virtual
infrastructure. The (pink colored) Virtual Layer above the physical hosts essentially consists
of two parts: The virtual machines that are provided to the customer of the IaaS-cloud, and
the closely linked facilities for managing the infrastructure. Our tailored cloud components
(depicted in green) introduced in the previous section run on top of virtual machines, where
usually the application layer is located. This means from an architecture point of view, that
the tailored components provide an additional layer between the raw virtual machines and the
application. However, this layering is not strict, as it is reasonable to assume that the end-user
applications are also hosted on top of the same Virtual Layer, albeit in different virtual machine
instances from the tailored components. Finally, the management of the taiored components
is best placed between the application, the management of the virtual infrastructure and the
tailored component. This way, it has access to all relevant actors involved in setting up and
providing the service.

3.4 Automated Management

In the previous section we examined the required administrative tasks and the architecture where
the corresponding management component will be embedded. It is important to note that the
applications wanting to use the service components are the driving force behind all resource re-
quirements. In order to provide a solution for automatically managing the service components,
we need to have access to usage statistics from the application layer. This allows our solution to
perform near-term predictions and plan the necessary changes at the lower layers. We provide
a small library that must be linked to each application and allows the programmer to specify,
how much demand for certain resources offered by the service currently exists.

One key aspect to keep this approach simple from an application developer’s perspective
is, that every resource is expressed in terms of the application. For example, in a database
scenario, the required storage capacity is always counted in terms of records in the database
instead of megabytes. This leads to a good seperation of concerns, as the additional memory
requirements for indexing and backup data often depend on the configuration of the database,
which is something the application should not be necessarily aware of. As a consequence, a
major part of the management for the tailored components consists of translating the resource
requirements between the application and the meaning in terms of raw infrastructure resources.

Describing resource requirements and performance properties isn’t an entirely new prob-
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lem, as similar techniques are already employed when dealing with machine-readable Ser-
vice Level Agreements (SLAs), like the WSLA Specification [LKKF03] does. Unfortunately,
those concentrate more on the business and monitoring aspects instead of automated deploy-
ment [BPA11, EdPG+08]. Although it is possible to trigger certain actions in case the service
no longer delivers satisfactory performance, it is unable to accommodate the required tailoring
process. Research efforts from autonomic computing initiatives [LML05] are more focused on
the technical aspects, but have a more holistic approach, where the global hard- and software
interdependencies are modeled [TBDP+06]. This is useful for making high-level decisions and
provide strategies for resource allocation, but they still do not provide a clear way to derive
parameters for the tailoring of service components. The same argument applies to the self-
managed infrastructure described in section 4.

Therefore, our solution is to keep a strictly layered model, deriving the requirements for the
tailored services directly from the application layer. Only the translated infrastructure resource
requirements are fed into the generic cloud managment to use the resoucre allocation and migra-
tion features of the underlying infrastructure. This way, we can re-use the existing techniques to
provide the necessary resource allocation and reconfiguration services. Our work concentrates
on the automated tailoring and resource dependencies. We only track the application-specific
usage and decide how to configure the tailored services accordingly, while leaving the resource
allocation strategies to the infrastructure layer.

3.5 Summary
As outlined in the previous sections, the software components currently offered by cloud providers
have several restrictions, especially in cloud-of-cloud scenarios, where portiability between dif-
ferent providers is am essential property. The alternative solution of hosting the desired compo-
nents on common virtual machines can improve the situation, but current commodity software
wastes expensive resources and has more administrative overhead. Fortunately, the resource
issues can be addressed by tailoring the VM images to contain only the minimal set of compo-
nents to run the service, as proposed in WP2.1. The administrative overhead can be eliminated
by connecting the service closer with the application in order to manage the provisioning of
service instances automatically. With some small additional effort invested in the development
of applications, we expect to get the same level of automatism as from the native services of the
cloud-providers, but without any vendor lock-in effects.
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Chapter 4

Migration of Resources Inside and Across
Clouds

Chapter Author:
Imad M. Abbadi (OXFD)

4.1 Introduction

We propose the usage of self-managed services to manage the migration of resources inside and
across Clouds. Self-managed services are software services which provide Cloud computing
environment with automated capabilities, e.g. manage resource’s availability, reliability, and re-
silience inside a Cloud and across Clouds-of-Clouds. Such automation of management is based
on many static and dynamic factors including Cloud user properties and Cloud infrastructure
properties [Abb11a]. Our main interest is in providing security and privacy by design for avail-
ability and resilience self-managed services. We now define these services, details of which can
be found in ([Abb11b]).

Resilience — Figure 4.1 provides a conceptual model of Resilience function. This function
resembles system administrators, who Deploys a Resilient Design at virtual layer. The Resilient
Design is provided by System Architect process at two cases: the first is when producing archi-
tecture for a new service request, and the second when updating an already exiting architecture.
Resilience function communicates with other resources (e.g. physical servers’ VMM) and/or
other management tools (e.g. Virtual Control Centre [Abb11a]) to Deploy the Resilient Design.
The resilience function is also in charge of communicating failures of a resource to other ser-
vices. This is by Triggering Cascaded Actions; e.g. on failure it might trigger the Availability
function to divert traffic to other available routes. The Resilience function should also Maintain
security and privacy by design, e.g. Resilience function should consider the hosting of virtual
resources at physical domains which are not geographically located within boundaries restricted
by the user properties.

Availability — The Availability function is in charge of i) maintaining communication chan-
nels of available virtual services with resources at application layer and ii) distributing applica-
tion layer requests evenly across available redundant virtual resources. Availability is supported
by a correctly Deployed Resilient Design. The higher resilient a system the higher availabili-
ty/reliability would be expected. Figure 4.2 provides a conceptual model for application Avail-
ability service. This Figure provides examples of Incidents from Resilience and Changes from
Scalability service, which Triggers the Availability service. The Availability service in turn Per-
forms Actions based on the Incidents and Changes. The Actions also Trigger Cascaded Actions
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Figure 4.1: Resilience Functions

to other services at both Application Layer and Virtual Layer. For example, if a channel is
marked unusable by the Resilience function, the availability process immediately stops divert-
ing traffic to that channel, and re-diverts the channel traffic to other active channels until the
Adaptability function fixes the problem. Availability function should also consider security and
privacy requirement by design. For example, it should maintain secure communication chan-
nels when distributing load, verifies the identity of communicating parties, and communicates
securely with other services.

In order to provide privacy and security by design for the above management services we
need first to understand Cloud infrastructure taxonomy. In the next section we start by providing
a brief description of the Cloud taxonomy, we then discuss what aspects of services we focus
on for the purpose of the demonstration.

4.2 Cloud Management
In this section we briefly outline Cloud taxonomy and infrastructure management.

4.2.1 Cloud Infrastructure Taxonomy Overview
In this section we outline the taxonomy of the Cloud infrastructure, detailed discussion of which
can be found in previous work [Abb11a]. A Cloud infrastructure is analogous to a 3-D cylin-
der, which can be sliced horizontally and/or vertically (see Figure 4.3). We refer to each slice
using the keyword “layer”. A layer represents Cloud’s resources that share common character-
istics. Layering concept helps in understanding the relations and interactions amongst Cloud
resources. We use the nature of the resource (i.e. physical, virtual, or application) as the key
characteristic for horizontal slicing of the Cloud. For vertical slicing, on the other hand, we use
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the function of the resource (i.e. server, network, or storage) as the key characteristic for verti-
cal slicing. Based on these key characteristics a Cloud is composed of three horizontal layers
(Physical Layer, Virtual Layer, and Application Layer) and three vertical layers (Server Layer,
Network Layer, and Storage Layer).

In the context of this report we mainly focus on Horizontal Layer. We identify a Horizontal
Layer to be the parent of physical, virtual or application layers. Each Horizontal Layer contains
Domains; i.e. we have Physical Domains, Virtual Domains and Application Domains. A Do-
main represents related resources which enforce a Domain defined policy. Domains at physical
layer are related to Cloud infrastructure and, therefore, are associated with infrastructure proper-
ties and policies. Domains at virtual and application layers are Cloud user specific and therefore
are associated with Cloud user properties. Domains that need to interact amongst themselves
within a horizontal layer join a Collaborating Domain, which controls the interaction among
members using a defined policy.

Domains and Collaborating Domains help in managing Cloud infrastructure, resource dis-
tribution and coordination in normal operations as well as during incidents such as hardware
failures. The management of resources, including their relationships and interactions, is gov-
erned by polices. Such policies are established based on several factors including: infrastructure
and user properties. Infrastructure properties are associated with Physical Layer Domains and
Collaborating Domains, while user properties are associated with Virtual and Application Lay-
ers’ Domains and Collaborating Domains.

4.2.2 Virtual Control Centre
In this section we outline part of Cloud’s virtual resource management, detailed discussion
of which can be found in previous work [Abb11a, Abb11c]. Currently there are many tools
for managing Cloud’s virtual resources, e.g. vCenter [VMw10] and OpenStack [Ope10]. For
convenience we call such tools using a common name Virtual Control Center (VCC), which
is a Cloud specific device that manages virtual resources and their interactions with physical
resources using a set of software agents. Currently available VCC software agents have many
security vulnerabilities and only provide limited automated management services.

VCC manages the infrastructure by establishes communication channels with physical servers
to manage Cloud’s Virtual Machines (VMs). VCC establishes such channels by communicat-
ing with Virtual Machine Manager (VMM) running on each server. Such management helps
in maintaining the agreed SLA and Quality of Service (QoS) with customers. VCC will play
a major role in providing Cloud’s automated self-managed services. We now summarize the
factors which affect decisions made by VCC services.

Infrastructure Properties — Clouds’ physical infrastructure are very well organized and
managed. Enterprise architects, for example, build the infrastructure to provide certain
services, and they are aware about physical infrastructure properties for each infrastruc-
tural component and groups of components. Examples of such properties include: com-
ponents reliability and connectivity, components distribution across Cloud infrastructure,
redundancy types, servers clustering and grouping, and network speed.

User Properties — These are as follows.

• Technical Requirements — In IaaS the organization enterprise architects team
would provide an architecture for the outsourced infrastructure based on applica-
tion requirements. This includes VMs, storage and network specifications. For
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example, enterprise architects could provide the properties of outsourced applica-
tions, e.g. DBMS instances that require high availability with no single point of
failure, middle-tier web servers that can tolerate failures, and the application nature
is highly computational. Realizing this would enable Cloud providers to identify the
best resources that can meet user requirements [Abb11a].

• Service Level Agreement (SLA) — SLA specifies quality control measures and
other legal and operational requirements. For example, these define system avail-
ability, reliability, scalability (in upper/lower bound limits), and performance met-
rics.

• User-Centric Security and Privacy Requirements — Examples of these include
(i.) users need stringent assurance that their data is not being abused or leaked; (ii.)
users need to be assured that Cloud providers properly isolate VMs that run in the
same physical platform from each other (i.e. problems of multi-tenant architecture
[RTSS09a]); and (iii.) users might need to enforce geographical location restrictions
on the processing and storage of their data.

Changes and Incidents — These represent changes in: user properties (e.g. security/privacy
settings), infrastructure properties (e.g. components reliability, components distribution
across the infrastructure and redundancy type), infrastructure policy, and other changes
(increase/decrease system load, component failure and network failure).

Self-managed services for potential Cloud should automatically and continually manage
Cloud environment. It should always enforce Cloud user properties; e.g. ensure user resources
are always hosted using physical resources which have properties enabling such physical re-
sources to provide the services as defined in user properties.

4.3 Security and Privacy by Design
As we discussed earlier Cloud infrastructure is structured into groups of resources (i.e. Physi-
cal Domains). Each is associated with a set of properties (i.e. infrastructure properties) which
enable the Physical Domain to address part of User Properties. In other words a user virtual do-
main is associated with user properties and is hosted at selected physical domain. The physical
domain selection should be based on its properties to be capable of addressing user properties.
This concept shows that user resources do not move randomly in the Cloud. In this section we
discuss an important part in this direction, which is about providing an automated management
tool which enable the control of resource movements within a Cloud infrastructure (WP 2.1)
and across Cloud-of-Cloud infrastructure (WP 2.2). This will be a key element of the TClouds
demonstration later.

(Assumption: We assume that Cloud infrastructure is monitored using CCTV recording, and
the physical infrastructure is physically protected against attacks, e.g. moving a server between
locations.)

Single Domain Management — Resources within a single physical domain are typically lo-
cated within physical proximity close to a shared storage. All physical servers have access
to a shared pool of storage servers where virtual machine images (VMI) are stored. The
physical domain should be associated with a policy defining each VM primary hosting
server and backup hosting servers. Within a Physical Domain a machine by default start
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on its specifically allocated primary hosting server. If the VM primary hosting server fails
(for any reason) to provide the services requested by the VM the VM would then auto-
matically be relocated to any of the backup hosting servers which has enough resources to
serve the VM. The allocation of VMs to primary and backup servers should be done au-
tomatically based on VM properties and physical servers’ properties by the VCC without
human intervention.

Multiple Domain Management — Resources within a single domain might need to be re-
located (e.g. migration process) to another physical domain for several reasons. For
example, i) source physical domain has physical failure which affects its properties, ii) a
physical domain is overloaded with resources which raise a need to move some resources
to a new domain, or iii) a virtual resource properties change which results in a need to
migrate it to new domain that satisfy the new needs.

Cloud-of-Cloud Management — Cloud-of-Cloud is a term that is used to refer to the col-
laboration of multiple Cloud providers to support dependable Cloud infrastructures; i.e.
Cloud providers collaborate to help each other in enhancing self-managed services as in
the case of higher resilience, reliability, scalability, and dependability. For example, if
a Cloud provider has an emergency other Cloud providers can temporarily provide their
unoccupied resources to support customers eliminating service failures. Self-managed
services must consider the existence of Cloud-of-Cloud, and it must also be designed to
enforce Cloud provider related policies when considering a decision to use other Cloud
resources, as this would have a major impact on security, practicality and legislation re-
lated issues. Specifically, hosting user resources at another Cloud provider should be done
only after ensuring user defined properties are enforced.

This can be managed by in a similar way to the management of resources migration be-
tween physical domains within a single Cloud, as discussed earlier. The main difference
user requirements would need to be validated to ensure that the user agrees on that.
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Chapter 5

Key Management and Secure Storage

Chapter Authors:
Sven Bugiel, Stefan Nürnberger (TUDA)

In this chapter, we elaborate on the issue of secure and trustworthy key management within
cloud infrastructures with respect to untrusted cloud service providers. We describe our ap-
proach to mitigate this issue, based on existing Trusted Computing concepts and technology,
and to establish secure block storage based on the secure key management.

5.1 Trusted Computing Basics
In our design we make use of standard concepts of Trusted Computing. Readers already familiar
with this topic may safely skip this section.

The TPM. The most prominent approach to Trusted Computing technology has been speci-
fied by the Trusted Computing Group (TCG, [tcg]). The cornerstone of TCG Trusted Comput-
ing is a hardware extension, called Trusted Platform Module (TPM, [Tru11]), which acts as a
hardware trust anchor and enables the integrity measurement of the platform’s software stack,
the secure reporting of these measurements to a remote party (remote attestation), and secure
storage that can be bound to the platform state (sealing).

Attestation. The platform state is measured in form of cryptographic hashes (SHA1) of all
executable content in the system. The hashes are stored in a secure memory location of the TPM,
called Platform Configuration Register (PCR), such that the stored values and their ordering are
reflected by the PCRs (extension). To securely attest the PCR values to a remote party, the TPM
specifications introduce a special attestation key type (Attestation Identity Key, AIK), which can
only be used from within the TPM in order to sign PCR values, but not for externally supplied
data. Together with a certificate that verifies that an attestation key belongs to a benign TPM,
a remote party is able to verify the authenticity and integrity of the reported platform state and
thus judge the platform’s trustworthiness. Additionally, the TPM provides common RSA-2048
signing and encryption of externally supplied data.

Secure Execution. One of the latest additions of Trusted Computing in conjunction with mod-
ern processors, is the ability to run software in a state isolated from the rest of the system with an
extremely minimalistic trusted computing base (TCB). Secure Execution Environments (SEE)
can be seen as a separation of two isolated modes of the processor and other hardware. When
switching to the secure execution environment, no assumptions have to be made about software
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running prior to the execution of the secure environment. The hardware further assures, that
external access (e.g. hardware DMA requests) cannot access the code and data running in the
SEE. Additionally, before running code in the SEE, the processor extends a PCR so that the
exact code that runs in the SEE can be attested to a third party.

Keys. TPM-generated keys form a key hierarchy, with the so-called Storage Root Key, SRK
at the top. While this root key never leaves the TPM, all other keys can be stored on untrusted
storage, because their private key portion is encrypted with their parent key. A specific feature of
the TPM is, that both TPM-generated keys and TPM-encrypted data can be bound to a platform
state, i.e., a state in which the key is usable or the data can be decrypted, respectively. The latter
one is denoted as sealing. Moreover, keys and seal data structure contain information about the
platform state in which they were created.

5.2 Classical Cryptography in the Cloud

Despite the well-known benefits of cloud computing, concerns about information security arise,
as customers currently have to treat the cloud as an unobservable black box which forces them
to blindly trust the provider.

Currently, Service Level Agreements (SLA) only shallowly deal with security objectives
(e.g. data isolation by access control). Even worse, there is no guarantee that these objectives
are indeed fulfilled. When handling sensitive data in the cloud, the client has to trust the cloud
provider not to eavesdrop on the data being processed inside a running Virtual Machine In-
stance (VMI). Usually, this trust is widened to the fact that the provider does not eavesdrop on
data incorporated in saved Virtual Machine Templates (VMT) or on external storage and that
the provider wipes all the hard disks after they broke down. As a countermeasure, one could
use cryptography to accomplish confidentiality. In order to process data, it has to be decrypted
at some point. Plaintext data that is processed inside the VMIs is then temporarily stored in
the VMI’s memory. One possibility to ensure confidentiality nevertheless, would be to perform
all operations under encryption (e.g. to use Fully Homomorphic Encryption (FHE) [Gen09]),
which however, is currently not yet efficient in practice. Instead, we build a reasonable and
practical solution that hides the cryptographic keys from the VMs and the cloud provider. How-
ever, as plaintext is processed in the VMI’s memory, we assume that nobody but the client can
get access to the VMI’s memory, i.e. cloud administrators have only remote access with limited
privileges. These implications are schematically depicted in Figure 5.1.
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Figure 5.1: Schematic Trust Models and Their Consequences.
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5.2.1 Keys in VMs
The reason yet not to store keys in the VM’s memory in the first place, is the fact that one of the
main benefits of cloud computing is running multiple instances of the same VMT. Controlling
the use of the same key in different instances or managing revocations is hard or even impossi-
ble. Further, provisioning this key is only possible by placing it in the VMT or by sending it to
the VMI over a trusted channel. For establishing a trusted channel in turn, a secret key already
in place in the VMT is needed for authentication. Putting the key in a VMT is not an option,
as it would imply trusting the external storage where the VMT is saved. Such storage is easier
accessible than VMI’s memory and faces the risk of lost control once the physical hard drives
are replaced. Furthermore, keys stored in a VM impede the concept of VMT sharing and the
needed cryptography needs to be implemented and managed by the cloud’s client. The different
alternatives of storing keys and their implications are depicted in Figure 5.2.
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Figure 5.2: Position of Key (Management) and its implication

In contrast, a central key management within the cloud provides the possibility to audit
the key usage and provides verifiable security for legacy VMs. Hiding the cryptographic key
(especially from the cloud provider) is crucial, as only a central key management guarantees
control over key usage. This means key management shall take place in the cloud, while the
key itself must never be exposed to anybody but the client. We focus on a practical scenario
that limits the needed trust in the cloud provider by leveraging existing Trusted Computing
approaches in order to hide cryptographic keys from adversaries, including the cloud provider
itself.

5.2.2 Our Approach
We adopt and combine the concepts of Secure Execution Environments with whitebox cryptog-
raphy in order to build a trust anchor for the key management in the cloud. With the concept
of Binding Keys borrowed from Trusted Computing, it is possible to provision secrets to the
cloud in an encrypted state. The decryption of that secret is only possible by a secure hardware
chip, the Trusted Platform Module (TPM). The TPM ensures that access to the secret is only
granted for the creation of publicly known, user-defined whitebox algorithms. These algorithms
ensure secure storage (confidentiality, integrity, authenticity, and freshness) and authentication
of running VMIs. The keys they use are however never exposed.

5.3 Cloud Provider Key Issues
Key management has always been an issue since the dawn of cryptography. A lot of key man-
agement strategies and solutions have been proposed since then in the literature. Of particu-
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lar interest are overall solutions that take the life cycle of a key into account, as proposed by
Björkqvist et al. [BCH+10]. An open standard for enterprise key management has been built
on top of their design, the OASIS Key Management Interoperability Protocol (KMIP, [oas]).
However, these solutions are external to the cloud and cannot be easily adopted to provide key
management for VMTs. Notwithstanding, they are reasonable solutions when providing keys
by external means, as described in subsection 5.2.1.

A lot of cloud storage providers use encryption to secure their customer’s data. However,
the level of security varies and usually, the provider has access to the data due to a shared key
that is known to the provider. Even worse, to the best of our knowledge, there is currently no
IaaS provider which supports encryption of VM Images. The following table (Table 5.1) gives
an overview of the security mechanisms in place at a few exemplary cloud storage providers.

Table 5.1: Cloud Storage Provider Security Overview

Provider Encryption
in Transit of Data

Amazon S3 Yes (HTTPS, signed Requests) None
DropBox Yes (HTTPS) Yes (Shared key AES-256)
Mozy Yes (HTTPS) Yes (Shared key 448 bit blowfish)
CrashPlan Yes (Proprietary) Yes (User key1)

DropBox and Mozy do encrypt their data, however, with a shared key that is known to the
provider [dro, moz]. The security documentation of CrashPlan states that the data is encrypted
with a randomly generated key which is in turn encrypted with the user’s password. However,
the same document also states that their administrators can access the data at any time [cra].
DropBox and Mozy additionally use deduplication (e.g. [QD02]) in order to save space. Dedu-
plication, however, can lead to serious privacy issues when applied across accounts [HPSP10].
In order to protect data from the provider, it is of course always pssible to do local encryption
before uploading a file. Amazon even provides a Java-based framework that interacts with their
S3 storage and encrypts files locally [ama] before uploading them to the cloud.

In order to enhance trust in the cloud provider’s infrastructure, a higher level of transparency
is desirable [CGJ+09]. However, this transparency is somewhat contrary to the original idea of
cloud computing, which promotes the abstraction from the actual cloud implementation as a
major benefit of cloud computing.

When not trusting the cloud provider at all, it is possible to operate on encrypted data. Par-
ticularly known are the concepts of Fully Homomorphic Encryption [Gen09] and Yao’s Garbled
Circuits [Yao86]. They are however contrary to cloud computing’s performance benefits due to
their huge complexity overhead. Additionally, von Dijk et al. [VDJ10] have shown that cryp-
tography is not enough in a multi-tenant environment like a cloud. Additional techniques like
access control and a secure virtualization architecture are needed to support the cryptographic
methods. These shall support the stronger separation and isolation of different customers from
each other and from the potentially untrusted cloud provider. Christodorescu et al. [CSS+09]
argue that beside virtualization security, machine introspection and understanding of the inner
workings of a VM is necessary as well.

1However, their documentation on security states: “Admins can restore without password, allowing easy local
fast restore” [cra]
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5.4 Cloud System Model

We consider the most general cloud service model that provides the ability for a customer to run
arbitrary Virtual Machines in the cloud (Infrastructure as a Service, IaaS). This cloud consists
of a client (the cloud customer) and the cloud provider, as depicted in Figure 5.3.
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VMT 

VMT Data 

Figure 5.3: The IaaS Cloud Model. The client accesses the cloud provider’s infrastructure from
his/her premises over the internet.

The client is able to provide arbitrary VMs that run on the cloud provider’s infrastructure.
These VMs are provided as VMTs by the client. Multiple VMIs of these templates can be
run inside the cloud. If these VMIs are designed to incorporate software like a web server,
public users – neither part of the customer nor cloud provider – can use this portal and access
services provided by the software running in such a VM. This software can in turn use the
persistent storage to save data by the portal users (e.g. documents, photos) which is potentially
confidential.

Additionally, for our approach to work, we assume that the physical hosts in the cloud
provider’s infrastructure are equipped with a TPM and HW (e.g., mainboard and CPU) that
supports the execution of code within a Secure Execution Environment (cf. 5.1). Since modern
off-the-shelf computers provide these features, this is a very reasonable assumption.

5.5 Trust and Adversary Model

Theoretically, an administrator of the cloud could mount many attacks, e.g. eavesdrop memory
of a running VMI, as it most likely contains plaintext data. An administrator may furthermore
have access to the local storage that functions as a back-end for cloud storage and saved VMTs.
Of course, cloud providers want to avoid this by enforcing physical access control, role based
access control, and operation surveillance. Furthermore, no single person accumulates all the
rights necessary to mount such attacks. Hence, it is reasonable to assume that access to physical
memory is (1) logically prohibited, i.e. a memory dump of a VM is not possible, and that (2)
physical memory access is not possible, e.g. to mount a cold boot attack [HS08, HSH+09].
Otherwise, an adversary could access plaintext data which cannot be prohibited with means
other than homomorphic encryption.

Under these reasonable and practical assumptions we propose a solution that protects VMTs
and storage from being eavesdropped on (confidentiality), from being modified (integrity and
authenticity) and from replay-attacks (freshness). The main focus is hiding the keys from any-
body but the client, i.e. even the cloud provider cannot access the keys.
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5.6 Design

A sole key management solution does not suffice, because even if the keys were stored securely,
their exposure to a running VMI implies loss of control over the key. The key would no longer
be concentrated at a single point and its usage could no longer be verified. The key could
be eavesdropped on, accidentally saved on storage or be distributed. Therefore, we propose a
solution that hides the keys by providing a model that abstracts cryptography from the VMIs
and software using it, by providing a legacy plaintext environment while still providing secure
storage whenever data leaves a VMI. The necessary keys involved in the cryptography are still
protected against malicious cloud providers.

Idea. Our solution enables the client to provision a key in a secure way that can later be used
from within the cloud without exposing it to neither the VM nor the cloud provider. This is
possible because the key is wrapped – i.e., its use is restricted to one publicly known algorithm
which is enforced by a hardware component and its correct execution can in turn be proven
to the client. The key never leaves the algorithm, but the algorithm does all cryptographic
operations on behalf of the user (either the client, or the hypervisor). Two components support
the idea, namely

Setup Component for secure key provisioning from the client to the cloud. The client receives
a certificate from the hardware module that assures him that a certain unwrapping mach-
anism is only possible by an algorithm known to the client. The client can then wrap its
key if it trusts this configuration or algorithm respectively. The wrapped key can only be
unwrapped by this known algorithm inside the Security Proxy.

Security Proxy works as a trust anchor for key usage later on. The Security Proxy hosts the
known algorithm that is the only one that can access the wrapped key.

Key 

ID 

Wrapped Key 

• PCRUse 
• PCRCreate 

Setup 
Component 

Security 
Proxy 

ID 

1 

2 

3 4 

Executed in SEE 

Figure 5.4: Setup and usage of the key with Trusted Computing. Hatched components are
executed in an SEE.

We assume that one key can only be unwrapped by exactly one publicly-known algorithm.
This is achieved by diversifying a basic algorithm to be binary unique (see implementation
details in section 5.7). We deliberately produce different algorithms for each key, in order to
guarantee access to a key is only given to exactly one known algorithm. This algorithm is hosted
by the Security Proxy, so by assigning a unique ID to each Security Proxy, the algorithms get
unique as well. This can be achieved by concatenating an integer number to each Security
Proxy.
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Secure Execution. The Setup Component as well as the Security Proxy execute in a Secure
Execution Environment (see section 5.1). This implies that the client can get a certificate of
proper execution issued by the hardware component.

In combination with the fact that each Security Proxy is unique, this enables the assignment
of a Security Proxy to a VMT, and in turn to its corresponding VMI. The Security Proxies are
identical in their functionality but can be distinguished by a unique ID. Each Security Proxy
provides (1) confidentiality, (2) integrity, (3) authenticity and (4) freshness of persistent data.
It keeps the involved cryptographic keys secret and only functions as an unavoidable black-
box that makes secure storage for VMTs and their corresponding VMIs available. The access
to external secure storage or to the client is possible by providing a translation layer between
plaintext and ciphertext domains. Therefore, the security objectives can be observed and au-
dited. The usage of the Security Proxy is depicted in Figure 5.5.

Hypervisor 

VMIVMT1 VMIVMT2 VMIVMT2 

Driver 

Security 
Proxy A 

Security 
Proxy B 

Security 
Proxy B 

Plaintext 
Ciphertext 

Client 

Figure 5.5: Introduction of the Security Proxy. VMIs stemming from the same VMT share the
same shade of gray.

5.6.1 Components
The Setup Component enables secure key provisioning by assigning a unique ID to each VMT
the client registers. The key supplied by the client is then wrapped using the platform con-
figuration (PCR) of the Security Proxy with that exact ID. That means, the client encrypts his
key using a public key that is certified that its associated private key can only be used by the
Security Proxy with the appropriate ID. This is ascertained by the PCR value during use by the
Security Proxy (‘PCRUse’ in Figure 5.4). Furthermore, the configuration state of the machine
while creating the wrapped key must be saved as well (‘PCR Create’ in Figure 5.4), so that
the Security Proxy can check the platform configuration at the state of creating the key.

The Security Proxy is the only entity having access to the client-supplied key in the cloud,
as it was wrapped by the Setup Component during provisioning. When the Security Proxy
has access to the wrapped key, it ensures that the PCR value during creation of the key was a
known-good value, hence it was created in a trusted environment. Furthermore, the placement
of the Security Proxy is crucial, in order to make it transparent to the infrastructure while at the
same time providing a guarantee that its use is mandatory (as shown in Figure 5.5) so that the
enforcement of security objectives is inevitable and hence can be audited.

The Security Proxy should not just provide key management capabilities, but access to
secure storage and a trusted path to a running VMI. It is required to provide the following
functions:
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Protect enforces the desired security objectives (confidentiality, integrity, authenticity, fresh-
ness) by applying cryptographic means and transforming the plaintext message to cipher-
text. Its counterpart is called

SecVerify which transforms data back to plaintext in case the verification of security properties
(integrity, authenticity, freshness) was successful.

We additionally want to add auditability by using a proof of execution to be able to proof and
verify the adherence to security objectives. In order to provide the three main functionalities
mentioned above, the Security Proxy is internally composed of the following cryptographic
primitives:

Authenticated Encryption – To preserve confidentiality and authenticity.

Monotonic Counters – To guarantee the freshness and to detect replay attacks.

Verified Decryption – To reverse the process of encryption and to verify its authenticity.

Counter Comparison – The saved counter state is compared with the current monotonic counter
value in order to prevent replay attacks.

COPE – Certificate of Proper Execution of internal computations for a third party to provide
verifiability.

PROTECT is achieved by using the Security Proxy’s primitives Authenticated Encrpytion
and Monotonic Counters. Authenticated Encryption transforms the plaintext message to cipher-
text while incorporating a Message Authentication Code (MAC). The Monotonic Counter is
increased and saved along with the encrypted message as ciphertext.

PROTECT’s inversion, SECVERIFY, is based on Verified Decryption and Comparison. While
Verified Decryption reverses the process and transforms the ciphertext back to plaintext, given
that the correct key is used, Verification is used to check the MAC and thus the message’s
authenticity and integrity. Comparison is necessary in order to compare the current counter
value to the one2 saved and encrypted.

All of the mentioned primitives use COPE to cryptographically ensure to the client that an
operation has been carried out successfully. This is realized by an authenticated log file that is
generated inside the Security Proxy and its generation is therefore verifiable as it runs inside the
SEE.

5.6.2 Placement.
The placement of the Security Proxy is crucial, as its use shall (1) be transparent, but (2) manda-
tory at the same time. In order to minimize key distribution and to improve performance, the
Security Proxy is local to every physical machine. We identified a placement so that the secu-
rity objectives can be guaranteed in all IaaS service model use cases: The deployment of a new
VMT by the client, its instantiation and secure access to the corresponding VMI. Furthermore,
the basic building blocks of this protocol allow for VMT Migration from one to another physical
host.

2This concept implies that every message and update to that message have their own counter. This can be
achieved using Monotonic Counter Trees [SVDO+06]. For the sake of simplicity we abstracted from that fact and
refer to them just as ’the counter’.
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The Security Proxy is to be placed in a layer where the virtual machine monitor (VMM)
accesses external storage. Furthermore, it must be used when the VMM receives a VMT in
order to instantiate it as a VMI. For provisioning of the keys, the cloud infrastructure must
allow the client to access one Setup Component as the keys are local to each Security Proxy. If
a VMI is created on a different host, these keys have to be migrated into another Security Proxy.

5.6.3 Instantiation
After the client supplied a wrapped key to the Setup Component, he is required to provide a
VMT that is encrypted with the symmetric key he supplied. When a VMI is being created
from that VMT, the hypervisor can decrypt the VMT using the Security Proxy’s SECVERIFY

function. The Security Proxy with the correct corresponding ID is the only entity getting access
to the symmetric client’s key that is protected by the wrapped key. This unwrapped key is then
used for all its cryptographic primitives and depicts the trust anchor. When such a Security
Proxy is created, it needs to be made sure that the one with the correct ID correlating to a
particular VMI is created. If the wrong ID is used in the Security Proxy it is however not a
problem, as a different resulting un-wrapped key could only decrypt and instantiate a different
VMI which in turn can only access its external storage belonging to the VMI anyway.

5.6.4 Revocation
For the deletion/revocation of keys, the process has to be reversed. This means that the wrapped
keys have to be destroyed as well their associated Security Proxies. As a deletion is generally
hard to prove, our solution uses an SEE, analogously to the Setup Component. The code respon-
sible for the deletion of the wrapped key, the Security Proxies and the reset of the monotonic
counters can then be proven to the client.

5.6.5 Interaction
The following gives an overview of how the entities (client and hypervisor) interact with the
Setup Component and the Security Proxy (Figure 5.6).

Security Proxy 

Setup Coponent 

Client 

Hypervisor 

Key Provisioning 

Protect 

SecVerify 

Protect 

Entity 

Executed in SEE 

Function 

Data 
Creation 

Figure 5.6: Interaction of the client, hypervisor, Setup Component and Security Proxy.
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First, the client provisions the key by using the Key Provisioning function of the Setup
Component. After that, the client is able to the Security Proxy’s PROTECT function in order
to provision data. The hypervisor in turn is able to access and verify protected data using the
SECVERIFY function provided by the Security Proxy. Persistent data is written back, again,
using the PROTECT function. As the keys are already provisioned to the Setup Component
and in turn available to the Security Proxy, they can be used to proof authenticity in a secure
channel, so that it becomes a trusted channel. A detailed description of the protocols is given in
the next section.

5.6.6 Sequence Diagram
Sequence diagram for the key provisioning phase (Setup Component).

Summary: The Client wants to securely provision a key to the SBS component, so that it
can be used in by the SBS component only. In order to do so, the SBS component generates a
wrapped key, that is, a ”capsule which certifies, that a secret can only be used in a pre-defined
environment and platform configuration (PCRuse). The client can then encrypt (”encapsulate)
the secret with the public key of this wrapper. The clients key is then sealed to a known platform
configuration for later use.

Predefined functions:

SIGN Creates a digital signature using a secret key sk.

ENCRYPT(PK, X) Encrypts the message x under asymmetric public key pk

Asymmetric keys (pk, sk) are implied to have already been generated.

5.6.7 Analysis
The placement of the Security Proxy does not change fundamental parts of the cloud archi-
tecture and maintains compatibility with legacy VMs that are not aware of encryption, MACs,
etc. These VMs do not even have to be changed when securing the external storage they use.
It further prevents cryptographic keys from being exposed to the VM, which ensures that they
are not leaked – unintentionally or by distributing VMTs. The standard use cases of a cloud
(VMT deployment, VMI access, VMI migration) are not changed in any way from a client’s
perspective. Therefore, it does not hinder the client in its original intention of using the cloud,
but only adds security value.

Security. The client gets a certificate that assures the unwrapping can only be done by a
certain algorithm, i.e. the Security Proxy with a specific ID. This proofs to the client that an
unwrap operation of the key he provided is always assigned to a specific unique ID. The client
can investigate the publicly known algorithm which is allowed to access his key. He can then
decide whether to trust the key provisioning and whether to wrap the key, so that the Security
Proxy can eventually access it.

As the two phases (Setup and Usage of a key) and their corresponding components (Setup
Component and Security Proxy, respectively) are both executing a Secure Execution Environ-
ment (see section 5.1), the client has an additional run-time assurance of code that uses its key.

The proposed design of the Security Proxy adheres to the security objectives and provides
verifiable key management and auditing functionality. It protects external storage’s confiden-
tiality and authenticity by means of encryption and MACs. Moreover, the MACs used to au-
thenticate data only rely on the symmetric key k and therefore no PKI is needed when using
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Figure 5.7: Sequence Diagram of the Setup Phase (key provisioning) for the Setup Component
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different Security Proxies to verify the authenticity of data – as opposed to digital signatures. A
PKI is, however, necessary for the client to check the COPEs. The frequency with which they
are checked is up to the client, though. The keys itself are only available to the Security Proxy
and isolated from external access, which means the use of the Security Proxy is mandatory and
it can consequently verify the internal key usage and provide logs for auditing. We assume that
the Security Proxy is created securely (in an SEE, see section 5.7 for implementation). As it
does not leak the key, it can only grant access to exactly one VMT of which a VMI is created.
This VMI has no means to access cryptographically protected storage except the one belonging
to this very VMI through accessing the Security Proxy. However, the entity controlling the Se-
curity Proxy could change the plaintext sent to and received from the Security Proxy. To ensure
that the controlling entity does not behave in a malicious way, its behavior should be verifiable
as well. This is shown in the implementation details we provide in the next section.

5.7 Implementation Proposal
To implement our proposed design several building blocks are needed: (1) A hypervisor to
mange running VMs and isolate them from each other and from external access. (2) A Secure
Execution Environment that provides isolation of secret keys and can verify that access to them
is only granted to well-known code. (3) A cloud software that manages the hypervisor and its
VMs.

Building Blocks. The first building block is NOVA [SK10], a very modular hypervisor fea-
turing a micro-kernel-like design. It separates the hypervisor into multiple components and
introduces a Micro- hypervisor which is mainly responsible for the enforcement of isolation be-
tween these components. It provides a small and well defined TCB and can be easily extended
with additional security features.

The secure execution environment can be provided by late-launch capable processors like
AMD’s SVM [Adv05] or Intel’s TXT [Int07]. For that purpose a framework like Flicker [MPP+08]
seems to be suitable. However, Flicker suffers from rather slow transition times between com-
modity execution mode and secure execution mode. Thus, it is not suitable for streaming plain-
text/ciphertext blocks of data through the Security Proxy with respect to performance. Similar
to TrustVisor [MLQ+10], we propose to use the Secure Execution Environment (SEE) as a ’fac-
tory’ in the sense of a software engineering design pattern. That means, the SEE only creates a
Security Proxy which can be verified and is in turn trusted.

For a cloud scenario to allow remote administrator access to each physical machine, a cloud
management software is needed that can communicate with the hypervisor in order to instruct it
to start/stop the VMs etc. Because of choosing NOVA, we do not even need to increase the TCB
for that purpose, as we can leverage the fact that one VM could run a traditional Linux-based
operating system to run the cloud management software and connect to the rest of the cloud
infrastructure via network. This Linux VM does not have to be trusted or secured as it works a
relay and just writes and reads encrypted and authenticated data. We chose OpenStack [Ope10]
for that purpose, a suitable open-source cloud manager that is compatible with a variety of
hypervisors and easily extensible.

Architecture. The generated Security Proxys have to be created for every VM (see Fig-
ure 5.8), as they are designed to only incorporate one key at a time. This Security Proxy runs
below the VMM as an isolated user mode process of the hypervisor. Due to the fact that the
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Figure 5.8: Proposed Architecture with NOVA

Security Proxy does not rely on access to hardware and is event-driven, we place it in NOVA’s
user space. The advantage is that we do not incorporate the TCB of an operating system and
VMM which allows easier verification of the Security Proxy.

Management. Our proposal only requires to add key provisioning capabilities to contempo-
rary cloud APIs. To start and stop VMs, the client accesses the cloud management VM which
in turn invokes the Security Proxy. Access to untrusted storage is routed through the Security
Proxy which also ensures that keys are never exposed. The secure channel is also established
with the help of the Security Proxy. As every VMM has only access to its corresponding VM,
a trusted channel can be established between the client and an instantiated VM via the Security
Proxy (see Figure 5.9).
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Figure 5.9: Trusted Path between client and its VMI.

The administration of the cloud, or the VMs respectively is done from within the cloud
manager and allows a local or remote administrator to start and stop VMs. As it runs in a
separate compartment it is isolated from the other VMs and especially the hypervisor and cannot
directly manipulate or eavesdrop data.

Internals. In order to allow VMs access to the data, the VMM of each guest calls the Security
Proxy to de- and encrypt a block and to provide the block level abstraction layer, expected by
standard operating systems.
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Security. In order to proof the integrity of the hypervisor and Security Proxy to the client we
make use of a DRTM which is implemented by tboot [tbo] for Intel late-launch-capable [Int07]
architectures and OSLO [Kau07] for AMD powered [Adv05] machines.

Restriction. There is a restriction concerning the combination of hardware virtualization and
late launch features. As stated in the standard lecture for late launch capable processors by
Intel (“Dynamics of a Trusted Platform”, [Gra09]), the hardware virtualization features must
be enabled, but turned off, when using the late launch (Intel TXT) capabilities. Moreover, the
measurement of the hypervisor during boot (Dynamic Root of Trust for Measurement, DRTM)
prohibits the use of TXT features, as TXT has already been used during boot and the processor
is currently executing in the secure execution mode. At least according to the documentation,
AMD’s SVM does not suffer from those limitations.

5.8 Conclusion
In this chapter, we elaborated on the issues of deploying user credentials, like cryptographic
keys, within the cloud providers infrastructure with respect to a not fully trusted cloud provider.
We argued that under the assumption that the cloud provider applies techniques to prevent phys-
ical attacks, Trusted Computing concepts and security extensions of modern off-the-shelf hard-
ware can be leveraged to mitigate the remaining threat of credential disclosure. We proposed
an architecture that makes use of these concepts and technology and showed how it can be used
to implement secure block storage for virtual machines.
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Chapter 6

Key Management for Trusted Infrastruc-
tures

Chapter Authors:
Michael Gröne, Norbert Schirmer (SRX)

6.1 Introduction

In this section we give a high level overview of the key management within the Trusted Infras-
tructures (cf. Deliverable D2.1.1 Chapter 13) which is used to build a trusted cloud infrastruc-
ture. Some preliminary Trusted Computing[tcg] basics were introduced in Section 5.1.

6.2 Architecture Overview

In the Trusted Infrastructures (cf. Deliverable D2.1.1 Chapter 13) a central management com-
ponent, called TrustedObjects Manager (TOM), manages a set of appliances, in case of TClouds
these are the TrustedServers (cf. Figure 6.1).

All hardware components, appliances as well as the TOM, are equipped with a Trusted
Platform Module (TPM) [Tru11]. When a component is started the TPM is employed for secure
booting to ensure the integrity of the hardware and software (in particular of the security kernel)
of the component. Moreover, the local hard drives of a component are encrypted by a key that is
stored within the TPM. Via sealing, the component can only decrypt the local hard drives if the
TPM has crosschecked the integrity of the component. Hence only an integer security kernel can
access the decrypted data. Note that on an appliance there is no need for manual administration
and hence no almighty root account is needed. All administrative tasks are controlled by the
TOM. This mitigates the risks of malicious insiders like cloud administrators within the premise
of the cloud provider.

The TOM is in charge to deploy configuration data (including key material and security
policies) to the appliances. Security services within the security kernel then handle the con-
figuration and ensure that the security policies are properly enforced by the component. Via
the Trusted Management Channel (TMC) the TOM ensures the integrity of an appliance using
remote attestation before transmitting any data. The communication between TOM and the
appliances is secured by a trusted channel (cf. D2.1.1, D.2.4.1).

Conceptually, appliances are stateless with respect to all configuration data.1 On every

1Exceptions are caches for limited offline periods.
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Figure 6.1: Schematic Trusted Infrastructure - TrustedServers managed by TrustedObjects
Manager.

boot they retrieve the current configuration from TOM and also maintain a permanent channel
to TOM to retrieve configuration updates (e.g., changes in the security policy) while they are
running.

6.3 Key Management for Trusted Virtual Domains

Central to Trusted Infrastructures is the concept of a Trusted Virtual Domain (TVD) [CLM+10,
CDE+10], which allows to deploy isolated virtual infrastructures upon shared computing and
networking resources. By default, different TVDs are isolated from each other. Communication
is restricted to compartments within the same TVD and data at rest is encrypted by a TVD
specific key. Remote communication between components of the same TVD over an untrusted
network are secured via encryption (secure channel). Only appliances of the same TVD, which
have access to the same TVD key, are able to decrypt the data. An appliance can be equivalent
to compartment, if there is only one compartment per appliance, or in case of the TrustedServer
a compartment is a single virtual machine instance and its operating system and applications.
Therefore, an appliance such as the TrustedServer can simultaneously run various compartments
attached to different TVDs (cf. Figure 6.2).

The TVD isolation builds on a public key infrastructure (PKI) managed by the TOM. For
each TVD, two public/private key pairs are generated by the TPM of the TOM. The private keys
never leave the TPM (or other special purpose cryptographic hardware) of the TOM. Only the
public keys are transmitted to appliances.

• PKI for TVD signature keys. The TOM acts as the root CA for the TVD. When a appli-
ance attempts to enter a TVD, it creates a public / private key pair and the appliance signs
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Figure 6.2: TrustedServers and TVDs, managed by TrustedObjects Manager.

the public key. This signed public keys can be used by the appliance as authentication
tokens to establish a secure communication channel between different compartments of
the same TVD. to prove membership of a TVD.

• TVD encryption keys. An compartment can encrypt data with the TVD key but only the
TOM can decrypt this data. Typical data that is encrypted by the TVD key are symmet-
ric keys created by the appliance that are used to encrypt payload data. The encrypted
symmetric key can be sent along with the encrypted payload data to other members of the
same TVD. The receiver asks the TOM to decrypt the symmetric key, and then decrypts
the payload data. Keeping the TVD decryption key local to the TOM and not spreading
it to all the appliances enables an easy revocation of TVD decryption capabilities.

6.4 Resilience and fault tolerance

In the architecture described above, the TOM is a critical component as it manages all the se-
curity policies and the key material. If the TOM fails the complete infrastructure it manages
will also fail. Hence it is important to be able to engineer a fault tolerant, resilient TOM. Cur-
rently the TOM is a single point of failure. However the key management and key distribution
was designed to allow for replicated TOMs supporting cold, warm, or even hot standby [Jal94].
The crucial design decisions here are the stateless appliances and the separation of ordinary
configuration information and the core key material (private keys never leave the TPM of the
TOM) within the TOM. Ordinary configuration information can be shared between TOMs and
is sufficient to allow a new TOM to reconfigure the whole infrastructure. Basically, when a
TOM fails, another TOM can take over and distribute a new configuration and a new PKI to the

TClouds D2.3.1 Page 44 of 89



D2.3.1 – Requirements, Analysis, and Design of Security Management

appliances.2 For the TVD signature keys this scheme works fine. The new TOM distributes its
public key to the appliances and thereby revokes the old ones. For the TVD encryption keys the
situation is more involved, as the private key of the old TOM never leaves its TPM any other
TOM is unable to decrypt data which was encrypted for the old TOM. Here the idea is to use
broadcast encryption schemes [FN94], to enable all TOM replicas to decrypt the data.

6.5 From Private to Public Cloud
In the scenario described so far one trusted management component, the TOM, is in charge to
manage all the infrastructure. In a cloud scenario this includes the TrustedServers of the cloud
infrastructure as well as all managed appliances of the customer. Such a setup matches the re-
quirements of a private cloud but do not fit well into the idea of a public cloud. It should not be
assumed that all on-premise appliances (e.g., mobile devices, VoIP telephones, desktop and lap-
top PCs and on-premise servers) of the customer should be managed by the cloud management
component (cf. Figure 6.4).

Trusted Cloud ProviderInternal Infrastructure

Trusted Management Channel

Cloud TOM

TrustedServer

TrustedDesktop

VoIP telephone

Mobiles

Office

TrustedServer

Figure 6.3: Internal Infrastructure appliances managed by cloud TOM.

This would imply that all the infrastructure of any customer is managed by a cloud providers
management component. This is not an ideal setup. Note that this is not a issue of the trust
model as we asses the trust in the cloud provider’s TOM via Trusted Computing technologies.
But an organization should be able to manage its own infrastructure by themselves and it should
be possible for an organization to use the services of more than one cloud provider at the same
time.

We propose to extend the scenario with federation of TOMs. Every customer / organization
has its own trusted management component which is in charge to manage the organizations on-
premise infrastructure (e.g. TrustedDesktops). Moreover, the cloud provider has a TOM. Both

2Note that during the setup phase of an appliance the set of TOMs that are accepted as managers are bound to
the appliance. Therefore an appliance can not be hijacked by a foreign TOM. Moreover, an appliance uses remote
attestation to ensure the integrity of the TOM.
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are connected via the TMC. A protocol between the organizations TOM and the cloud providers
TOM allows the organization to extend its infrastructure to the cloud (cf. Figure 6.4).
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Figure 6.4: Internal Infrastructure (organizations TOM) combined with Cloud Infrastructure
(cloud TOM).

So let us revisit the key management issues within this scenario of a federation of TOMs.
We start with the signature key for a TVD. When an organization wants to start a VM in a TVD
within the cloud, the organizations TOM asks the cloud TOM to start a compartment within a
TVD for which it has the root CA, CAO. The cloud TOM will then create a new root CA for
that TVD, CAC . From now on not only CAO is accepted as root CA for the TVD but the set
{CAO, CAC}. This is propagated by the organization’s TOM as well as the cloud TOM to all
relevant appliances. On an more abstract view this operation can be seen as a join of TVDs.
Two separate TVDs, identified by CAO and CAC are joined to a combined TVD {CAO, CAC}.
In the cloud scenario this join is not symmetric but more a master-slave relationship, with the
organizations TOM acting as master and the cloud TOM acting as a slave. The security policy
of the organization is pushed to the cloud TOM and then further to the servers within the cloud.

With the TVDs encryption key the extension towards a federation of TOMs is not as straight-
forward as with the signature key of the TVD. As described above TVD encryption is handled
by an asymmetric key where the private key is stored within a single TOM, or via broadcast en-
cryption within a set of TOMs. In a scenario where the cloud TOMs may dynamically change
(as an organization buys resources from different cloud providers) this rather static setup does
not fit well into the picture. Here we can go for at least two options:

• As the organization TOM acts as a master, the cloud TOM can always forward all de-
cryption requests to the organizations TOM. The drawback of this approach is the tight
coupling of the different TOMs which can no longer manage their appliances alone but
always need the to refer to the master TOM.

• Alternatively we can relax our restriction of the private decryption key never leaving the
TOM and also distribute it to the cloud TOM. This alternative seems to better suit the
requirements of a distributed, federated infrastructure. Every TOM is capable to manage
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all of its appliances on its own without having to consult a master TOM. Moreover, this
also simplifies the task of a scalable, resilient TOM within a single infrastructure, as we
do not need more advanced encryption schemes like broadcast encryption.

6.6 Conclusion
This chapter elaborated on the management aspects, especially the management component(s)
for Trusted Virtual Domains in the context of a trusted cloud infrastructure. Trusted Comput-
ing technology is employed to guarantee the integrity of the trusted computing base which is
distributed among various components and stakeholders. The architecture is designed such that
the management components reflect the responsibilities of the different stakeholders. The cloud
customer is responsible for managing the security policy of his organization, while the cloud
provider manages the cloud infrastructure. The management protocol ensures that the organi-
zation’s security policy is correctly enforced within the cloud components of the provider.
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Chapter 7

Ontology-based Reasoning for Cloud Infras-
tructures

Chapter Authors:
Daniele Canavese, Emanuele Cesena, Gianluca Ramunno, Jacopo Silvestro, Paolo Smiraglia,
Davide Vernizzi (POL)

7.1 Introduction

Cloud computing is grounded on a massive use of virtual appliances. To automatize the man-
agement of a virtualized system, it is necessary to describe it in a coherent and centralized
way [BSB+10].

A simple yet powerful approach for modeling a knowledge domain (e.g., a cloud envi-
ronment) is given by ontologies. In philosophy, ontology is the study of the nature of being,
existence, or reality in general and of its basic categories and their relationships. Similarly, in
information technology, an ontology is an explicit specification of a conceptualization. Its main
objective is the formal representation of an application domain (i.e., our portion of reality), ac-
cording to our knowledge of the domain itself. An ontology defines a set of representational
primitives used to describe a domain of knowledge. These primitives are typically:

• Instances, objects or individuals. These may include concrete objects such as a person or
a car, as well as abstract objects such a word or a number.

• Concepts or classes. They are collections of objects such as people, cars or numbers.

• Relationships or properties. They describe the way classes and individuals can be related
to each other such as the hasColor or isASubclassOf properties.

Ontologies offer a great expressive power, giving the possibility to describe in a compact
and more natural way a large variety of application domains with the benefit of a formal rep-
resentation. Furthermore, an ontological model can be analyzed by a reasoner or inferential
engine, a software component able to deduce additional properties and classifications using
logic approaches. For example, a reasoner can infer that A can communicate with C (via B),
although in the original ontology only the A-B and B-C connections are present. In addition,
reasoners can also discover inconsistencies, that is impossible or forbidden situations. In an IT
environment, consistency checking can be very useful to asses a configuration’s validity or to
find the policy conflicts.
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Starting from a description of the infrastructure and a logical model relating the description
to security goals, threats and available countermeasures, it is possible to automatically derive
security properties of the system. This can leverage the effort of both cloud administrators,
that need to discover vulnerabilities in their infrastructure, or auditors that need to assess the
compliance with certain security properties.

In this scenario, ontologies offer a suitable tool for both describing the system and build-
ing the logical model. Moreover, they support automatic reasoning, that can be used to infer
new properties – specifically, we are interested in security properties – following a bottom-up
approach [KLK05, HSD07, FE09]. This is usually done by defining classes with more and
more levels of abstraction, and linking them with consistent relations. For instance, we can
derive a logical channel between two services from the existence of a network path between the
two hosts running the services (with no filtering devices in between). Then we can state that
the logical channel can be secured if, e.g., both the hosts have the capability to establish TLS
channels.

Coming back to the general problem of modeling a system, one of the main issues of au-
tomatic approaches is how to actually gather precise information that correctly describes the
system under investigation. The widespread use of virtualization in cloud infrastructures from
one side increases the complexity of the description as it allows to dynamically modify the net-
work topology, and add or remove virtual machines on-the-fly. On the other side, tools such
as VMWare products or open source counterparts as Libvirt [Red11] are available and can be
used to manage such a complexity [BSB+10]. Therefore, they can also be used to automatically
gather real-time information about the system.

In this chapter, we propose a coherent ontology to describe a cloud infrastructure system
and annotate security properties. More in detail, the system description can be provided at
different layers: the physical layer containing the hardware devices and the physical networks;
the virtual layer which includes virtual machines and virtual networks; the software layer that
contains the software running on a physical or virtual machine, from the operating systems
to the applications providing services; the service layer which describes services running in
the system, their behavior and interaction; and finally, the security layer that defines security
threats, requirements and mechanisms to annotate physical or virtual objects and services.

For each layer, we have selected standard (or at least publicly available) languages or ontolo-
gies to facilitate the integration of our description with other works in literature, thus allowing
a wider range of analysis to be performed on a common knowledge base.

Our contribution is two-fold. On one side we provide the “glue” between ontologies at the
different layers, so that the information at each layer can be used by others. This contribution
turns into the definition of a unified ontology. On the other side, we define a building block
for the virtual layer, i.e. a completely new ontology inspired by the Libvirt object model and
XML language. The new ontology to describe virtual systems, which has been developed in
collaboration with the Posecco project (EU contract IST-257129, www.posecco.eu), con-
sists of 272 classes, 74 object properties and 102 data properties. The most important class is
VirtualDomain, which is related to other 18 classes and is referenced in 34% of the prop-
erties. A more detailed description of the ontology is available in [SCCS11], while it is also
publicly available for download at http://security.polito.it/ontology.

The remainder of this chapter is organized as follows: In Section 7.2 we discuss the related
works, particularly in the field of the ontology-driven security analysis. and in Section 7.3 we
introduce the languages on which we rely for the definition of our (overall) unified ontology. In
Section 7.4 we introduce the new building block, i.e. the ontology for the virtualization domain.
The unified ontology is described in Section 7.5, including a detailed example that demonstrates
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the validity of our approach.

7.2 Related Work

In [YBS08], Youseff et al. proposed an ontology for the entire cloud computing environ-
ment, mentioning virtualization in their Software Kernel layer. However the focus of their
work is to provide a description at a high level of abstraction, and thus it lacks details. Dast-
jerdi et al. [DTB10] proposed an ontology of the virtual environment based on the Open Virtu-
alization Format (OVF) [DMT10]. The focus of their work is very similar to our ontology for
the virtual domain, however their paper contains few details about the actual ontology that it is
not publicly available.

In [DKF+03], Denker et al. proposed an ontology for describing the security aspects of web
services; their work focused on security mechanisms such as encryption, signatures and au-
thentication systems but did not include the concepts of threats and attacks such as the ontology
described by Kim et al. in [KLK05]. Kim and his team revisited Denker’s work, reorganized its
structure in a more consistent fashion and added support for OWL-S. However, both represen-
tations totally lacked a systematic classification of asset elements.

A comprehensive approach was made by Herzog et al. in [HSD07]. Starting from [KLK05],
they created an ontology capable of modeling security mechanisms, threats, vulnerabilities and
also assets and their attempt is the starting point of our work. In [FE09], Fenz et al. expanded
the Herzog ontology in an orthogonal direction, adding new concepts derived from a number of
security recommendation standards such as the German IT Grundschutz Manual [BSI05] and
the standard ISO 27001 [ISO05].

The automatic inferential capability of ontological architectures can be used to better un-
derstand the potential pitfalls of a system, as described by Steele in [Ste08]. He introduced an
ontology for vulnerability assessment and he showed that this approach can be used to discover
what a web service user can actually access using complex inferential chains, emphasizing the
limits of the manual inspection.

Security attack modeling is also an interesting application field for the ontologies, as demon-
strated in [VH06]. In this work, Vorobiev et al. proposed a common knowledge base for dis-
tributed firewalls and IDSes, modeling a set of web service attacks such as the DoS and Mitnick
attacks. Using such models, a distributed architecture can be hardened thanks to the shared
information about the current system status.

Furthermore, a noteworthy work of comparison and review of ontological techniques in the
security field is available in [BLVG+08]. In this paper, Blanco et al. compared and analyzed
about thirty works, confirming this as a very active research branch.

7.3 Existing Building Blocks

In this section we review the existing languages that we have used as a basis to build our overall
ontology.

In Section 7.3.1 we briefly discuss the languages which we used to build and enhance our
ontology, while Sections 7.3.2 and 7.3.3 introduce a number of XML based standards that in-
spired us in the creation of the hierarchical content of the ontology.
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7.3.1 Ontology Languages
OWL [PSHH04] is a standard language to describe ontologies developed by the World Wide
Web Consortium (W3C).

Before the introduction of OWL, the default language used to represent knowledge was
RDF (Resource Description Framework). RDF contains the constructs needed to express the
meaning of terms and concepts in a way that can be easily processed by a computer. However,
RDF has some limitations like the constraints on cardinality and attributes. To overcome these
limitations, the W3C developed a new language called OWL. The new features introduced by
this language are the possibility to express some characteristics like transitivity and inverse, or
the possibility to declare the disjunction or the combination of classes by means of boolean
operators (union, complement, intersection).

OWL has been released in three different versions, with increasing expressive capabilities
(and complexity): OWL-Lite, OWL-DL, OWL-Full.

OWL-Lite is the syntactically simplest version, that can be used to define class hierarchies
and constraints but, for instance, it supports cardinality constains only permitting cardinality
values of 0 or 1. OWL-DL, whose name denotes correspondence with description logics, is the
intermediate version, with increased expressive power and two fundamental properties: com-
putational completeness (all the propositions are computable) and decidability (all the compu-
tations end in a finite amount of time). OWL-DL includes all OWL language constructs with
restrictions such as type separation (a class can not also be an individual or property, a property
can not also be an individual or class). Finally OWL-Full has the maximum expressivity, at the
price of no warranty about computational completeness and decidability. For example, in OWL
Full a class can be treated simultaneously as a collection of individuals and as an individual in
its own right.

To enhance the expressiveness of OWL, the Semantic Web Rule Language (SWRL) [HPSB+04]
was designed. SWRL provides a high-level abstract syntax which extends the OWL syntax,
while OWL objects are still used for the semantic. Using SWRL it is easier to make complex
definitions, such as chains of properties.

SPARQL [PS08] is a W3C standard language, similar to SQL, used to perform interroga-
tions on OWL models, resorting to the semantic relations represented by this language. The
query can use operators such as DISTINCT, ORDER BY, LIMIT that are also present in SQL
with the same meaning. The results of the query can be in the same format as the knowledge
base, or encoded in XML.

7.3.2 P-SDL (POSITIF System Description Language)

P-SDL [BLP+07] was developed in the context of the POSITIF project (EU contract IST-2002-
002314). It is an XML-based language that comprises the definition of a vocabulary of elements
and attributes. It can be used to formally describe an IT system, its logical and physical topol-
ogy, functionalities, network configuration, and security capabilities and mechanisms of each
node.

Let us consider the high level UML model shown in Figure 7.1. The main class is Element
and all the network components, including the Network itself, are defined as its specializa-
tions (exploiting inheritance). NetworkElement, a subclass of Element, represents all the
(physical or virtual) elements which compose a network. A NetworkElement has at least
one communication point with some other entities: a Link represents the physical connec-
tion between two network nodes (through their own interfaces). An Interface is a physical
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Figure 7.1: P-SDL language UML model.

point of access and communication between network elements. Many network addresses can
be associated to a single interface. This is the basic entry point to any connected element.

LogicalElement is an abstract class used to represent features and abilities that a net-
work node may have, including:

• Services: represent the ability to provide any given service, like a web or FTP server.

• Capability: represent the ability to enforce a security policy, through a security protocol
or an application gateway, e.g. the capability to establish secure channels through TLS.

• Other logical elements that can not be classified inside these two main classes, for instance
the presence of an operating system or hypervisor, a software element, or an application
protocol.

7.3.3 WS-CDL
The Web Services Choreography Description Language (WS-CDL) [KBR+05] is an XML-
based language that describes peer-to-peer collaborations of participants by defining their ob-
servable behavior from a global, external point of view.

The primary goal of WS-CDL is to provide a declarative language that defines from a global
viewpoint the common and complementary observable behavior of services, the information
exchanges that occur and the jointly agreed ordering rules that need to be satisfied. Other goals
include reusability and modularity of the specification and composability of already existing
descriptions into a new choreography.

The WS-CDL specification is aimed at being able to precisely describe collaborations be-
tween any type of participant regardless of the supporting platform or programming model used
by the implementation of the hosting environment and it is therefore useful not only in the con-
text of Web Services, but can be used more in general to describe any choreography between
services.

7.4 An Ontology for the Virtualization Domain
In this section, we propose a novel ontology for describing virtualized environments and per-
forming analysis in this field, with the added benefit of using solely standard languages and
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standard OWL-DL reasoners. We note that this ontology is independent from the unified ontol-
ogy discussed later, thus the virtual ontology is developed to be self-consistent.

7.4.1 Application Field and Scope of the Ontology
Before starting the description of our ontology we introduce the terminology that will be used
through the remaining sections. The hypervisor, or virtual machine monitor, is the core compo-
nent of a virtualization system; its role is to logically multiplex a number of physical resources.
A hypervisor is a software running on a physical system called a host. A host can contain
zero or more domains, or virtual machines, that are computing machines which comprehend
several virtualized components made available through a hypervisor. Within each domain, an
operating system, the guest OS, runs; different virtual machines may run different guest OSes
simultaneously on top of the same hypervisor.

Our ontology-driven approach is motivated by the need for a coherent description of both a
virtual environment and the underlying physical system. It allows the extraction of additional
information, such as the topology of the existing virtual networks. Our ontology also enables
a range of analyses, including the discovery of relationships between the physical hardware
and virtualized elements (such as, for instance, when looking for the physical machines that
provide the disk volumes to a domain). Knowing these relationships is particularly relevant for
management purposes, to guarantee a proper allocation of the physical resources as well as to
assess the effect of physical world on the virtual one (cf., e.g., [BSB+10]). We will come back
to these issues and provide relevant examples in Section 7.4.5.

To achieve these goals we have organized our ontology into three main layers. Figure 7.2
presents a bird’s eye view of the ontology using the UML class diagrams notation.

Starting from the Libvirt XML format, we have identified several classes which map all the
objects that can be virtualized by a hypervisor. This brought us to the creation of the virtual
layer, that contains elements such as the domains, together with all the virtual devices that are
contained into the virtual machines.

One of the major limitations of the Libvirt XML format is the lack of a representation for
the physical hardware. To bridge this gap, we have built the physical layer using the same base
structure as its counterpart, the virtual layer. Their similarities allow us to represent both virtual
and physical objects in a simple and modular way. It is important to notice that this layer is only
intended to provide the minimum set of classes necessary for reasoning on the virtual realm,
and it is not a comprehensive ontology of the physical hardware.

During the ontology creation process we have frequently encountered several “concepts”,
such as bus addresses or CPU features, that do not fit exactly into the virtual or physical worlds.
For the sake of modularity, all these concepts were classified into an ad-hoc layer, the logical
layer. Its content is rather heterogeneous and will be discussed further.

7.4.2 Logical Layer
Since both the virtual and the physical entities make an extensive use of logical notions, their
description is provided first. The logical layer contains concepts which are used to describe
several additional characteristics of physical and virtual objects together with elements which
are used to establish relationships between the virtual and physical layers. Furthermore, it
includes all the software related classes.

This layer consists of several classes, but the most distinctive ones are actions, mechanisms,
features, identifiers and logical bridges.
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Figure 7.2: The ontology UML class diagram.

The actions, represented by the Action class hierarchy, are entities used to define what the
system must perform when a particular event occurs. Actions effectively model event-driven
reaction concepts. For example, the class MaintenanceAction, depicted in Figure 7.2, is
used to instruct a domain what to do when a system reboot or shutdown is requested. This
class contains several individuals, each one representing a single action, such as the Restart
and the Destroy objects, that respectively represent a simple virtual machine reboot or a full
domain shutdown.

The mechanisms, modeled by the Mechanism class hierarchy, specify how a particu-
lar goal should be accomplished. Both actions and mechanisms describe how to perform a
job, but the first are event-driven, whereas the latter are event-independent. For example, the
BootingMechanism class defines how to start a guest OS. It contains several individuals that
are used to specify how the boot sequence must be accomplished, e.g., launching the domain
boot loader or letting the hypervisor perform a direct kernel launch.

The features, mapped to the Feature class hierarchy, are used to model the characteristics
of a physical or virtual object. More specifically, features are used to declare what a physical
component supports and what a virtual entity requires. For example, the CPUFeature class
describes both the physical and the virtual CPU features, allowing the precise determination of
what a physical processor offers and, on the other hand, what a virtual processor needs. This
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class includes several individuals such as the SSEFeature and the TSCFeature objects that
respectively represent the Streaming SIMD Extensions and the TimeStamp Counter features.

The identifiers, depicted by the Identifier class hierarchy, are named tokens that uniquely
designate an object. Since the IT world extensively makes use of a wide range of such concepts,
this class hierarchy is remarkably broad, counting 36 descendant classes. Figure 7.2 displays, as
an exemplification, the FilePath class that models a file pathname, a concept used for several
purposes, such as to specify an image file for a virtual disk. Another particularly useful and flex-
ible identifier is the network host, represented by the HostId class, which is used to specify a
generic machine using a DNS name, a MAC address, or more frequently an IP address, modeled
by the IPAddress class. Identifiers contain additional notions such as directory pathnames
and bus addresses (PCI, USB, CCID, . . . ).

The logical layer also consists of the LogicalBridge class, which represents the concept
of logical bridge, a core entity that is used to create virtual networks and to allow a domain to
communicate with the outside world. Bridges are used to join together both physical and virtual
NICs, connecting the two layers. Several virtual and physical objects, particularly the network
interfaces, can use the isBoundToLogicalBridge object property to explicitly state their
connection with a specific logical bridge. This class is crucial for a great variety of network
analysis, as we show in Section 7.5.6.

Most of the virtual and physical layer classes are strongly dependent on the logical layer
through several object properties such as the hasAddress property that specifies the address
owned by an entity, e.g., the IP address of a physical or virtual network interface. Furthermore,
several virtual devices can have the hasSource and the hasTarget properties, which re-
spectively define the data-source (e.g., a path to an image file) and the target address, that is the
location where a guest OS will find this data (e.g., the hda disk).

7.4.3 Virtual Layer
The virtual layer consists of all the components that are virtualized by a generic hypervisor, i.e.,
the virtualized hardware and the domain concept. It is mapped to the Virtual class hierarchy
and a subset of its classes is shown in Figure 7.2.

One of the fundamental concepts is the notion of domain, represented by the VirtualDomain
class. Since this class plays such a key role in our ontology, a great number of data and object
properties can be attached to it. These attributes are used to link virtual machines to other virtual
notions or to the physical world, relying on the objects provided by the logical layer.

Every domain has a set of virtual CPUs, mapped to the VirtualCPU class hierarchy.
Virtual CPUs can be described in detail, for instance using the property hasCPUFeature
that uses the CPUFeature class individuals to define the requirements needed by a particular
virtual processor.

Similarly to virtual CPUs, virtual devices are modeled by the VirtualDevice class hi-
erarchy which represents all the virtualized hardware that can be attached to a domain with
the exception of the processors. Virtual devices are basically virtual peripherals such as disks,
virtual sound and video cards, and generally everything that can be connected to a virtual bus
(PCI, USB, CCID and so on). The virtual device structure is vast and heterogeneous since ev-
ery piece of hardware is extremely specialized. Figure 7.2 displays the VirtualInterface
class which models all the virtual network interfaces that a domain can use for communicat-
ing. The VirtualInterface class has several descendants that specialize the network in-
terfaces, e.g., the VirtualBridgeInterface class represents a virtual network interface
connected to a logical bridge. Figure 7.2 depicts also the VirtualDisk class which models
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the virtual disks, i.e., hard disks, CD-ROM and floppy drives. This class has a special prop-
erty called reachesSource that relates a device to its real data source; in Section 7.4.5 we
demonstrate how to automatically infer this property in a remote storage scenario.

Another representative entity is the VirtualPool class, which describes the storage
pools. A storage pool is a set of volumes, e.g., disk images, that can be used to implement
several advanced storage techniques such as remote disks or backing stores.

Since VirtualDomain is the core class of our ontology, we briefly introduce several ob-
ject properties that are used to connect it to other concepts. The hasVirtualDevice and
hasVirtualCPU object properties are used to specify that a particular domain contains a set
of virtualized CPUs and devices. These properties also have a number of sub-properties like the
hasVirtualInterface and hasVirtualDisk properties, that respectively specify the
virtual interfaces and disks owned by a domain. Moreover, virtual machines are related to the
logical layer entities, for example, as stated in Section 7.4.2, the hasBootingMechanism
property indicates how a domain should boot its operating system. Furthermore, for each virtual
machine we can specify what to do when a reboot is requested; the MaintenanceAction
that will be performed is defined by the performsOnReboot object property. Addition-
ally, the hasHypervisorType property is used to refine the domain type, by defining the
compatibility between a virtual machine and a specific hypervisor.

7.4.4 Physical Layer
The physical layer consists of all the tangible objects, i.e., the real hardware. Libvirt itself does
not provide a description model of the real world, since this is outside its scope, but we felt
that creating an ontology solely describing the virtual realm would not be very useful. In fact
the virtualized hardware is strongly related to the real hardware and decoupling these two layers
will severely limit the usability of our ontology for performing analyses. Therefore we created a
hierarchical structure for the physical world, similar to the one described in Section 7.4.3 for the
virtual layer. Its root class is named Physical and its internal architecture closely resembles
the virtual layer one. Considering these similarities, we briefly discuss a selection of the most
distinctive subclasses.

The PhysicalMachine class represents the physical machines, i.e., the real computers
hosting zero or more domains. This class is the physical counterpart of the VirtualDomain
class and, in a similar way, several object and data properties can be assigned to it in order
to describe its configuration in detail, ranging from the owned hardware to the hosted virtual
machines.

The PhysicalCPU class models the physical CPUs, i.e., the real processors of a phys-
ical machine. The supported features of the physical processor can be specified using the
hasCPUFeature object property that points to the desired CPUFeature class individuals.

The PhysicalDevice class hierarchy maps all the physical devices apart from the pro-
cessors. Figure 7.2 depicts the PhysicalDisk and PhysicalInterface classes which
respectively represent the physical disks (hard disks, CD-ROM and floppy drives) and physical
NICs. The latter possesses an object property named isPhysicallyLinked that is used to
represent a physical connection, e.g., a cable, between two physical network interfaces.

A virtual machine can contain several virtual CPUs and devices. A physical one can be de-
scribed in a similar manner but with a set of physical processors and devices. This can be done
by specifying the object properties hasPhysicalCPU and hasPhysicalDevicewhich in
turn have several sub-properties such as hasPhysicalInterface and hasPhysicalDisk,
that are used to define the network interfaces and disks owned by a physical machine. Further-
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more, the physical machines have the hostsVirtualDomain object property which repre-
sents its hosted domains. This property is particularly important because it links the physical
layer to the virtual world. In addition, the runsHypervisor object property can be used to
specify which hypervisor is running on a host.

7.4.5 Refinement of the Core Ontology
So far, we have discussed the structure of our ontology, the type of concepts it contains and
their relations. Here we show how this ontology can be used to simplify the management of a
virtual infrastructure and how the reasoning facilities provided by an OWL-DL reasoner can be
exploited to this end.

In the ontology, freely available at http://security.polito.it/ontology, we
have included all the classes defined in this section as children of the ExampleViews class.
All the following listings use the Manchester OWL syntax [HPS09].

First, we can add new concepts to the ontology, to obtain a finer classification of the indi-
viduals and infer additional properties.

For instance, we defined the concept MultiConnectedDomain (Listing 7.1) that gathers
all the domains which have more than one network interface and the DomainWithRemoteDisk
(Listing 7.2) which describes all the domains that are connected to a remote disk, i.e. a disk
shared by a remote host through a virtual pool.� �
VirtualDomain and (hasVirtualDevice min 2 VirtualInterface)� �

Listing 7.1: MultiConnectedDomain definition.

� �
VirtualDomain and (hasVirtualDevice some

(VirtualDisk and (hasSource some
(FilePath and ( inverse (hasTarget) some VirtualPool))))))� �

Listing 7.2: DomainWithRemoteDisk definition.

Moreover, we added a number of object properties and enriched the definition of several
existing ones, by adding axioms to increase their expressiveness. We added the isLinked
relation as a super-property of isBoundToLogicalBridge, and defined it as symmetric
and transitive. In this way we assert that if an interface is bound to a logical bridge then this
interface is linked to that bridge and vice-versa and that all the network interfaces bound to the
same bridge are linked to each other (since the isLinked property is transitive).

Finally by adding a property chain (shown in Listing 7.3), we show how it is possible to
infer the connection among domains starting from their description, which includes their virtual
network interfaces, and the description of the logical bridges of a physical machine.� �
hasVirtualInterface o isLinked o inverse (hasVirtualInterface) ->

isConnectedToDomain� �
Listing 7.3: isConnectedToDomain property chain.

Given this property chain, if there are two different domains each having a virtual net-
work interface linked among them, then the two domains are connected. Subsequently, as for
isLinked, we can state that isConnectedToDomain is transitive and symmetrical. In this
case we assume that each virtual machine works as a network bridge and forwards the traffic
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coming from each interface to all the others. Verifying such a property would require analyzing
the internal network configuration of each domain and since this configuration is not handled
by Libvirt, this is out of the scope of this work. Moreover we decided to be conservative from
a security point of view, therefore we consider this kind of connection possible.

We now show how it is possible to infer additional information about the system, by adding
simple logical rules expressed using the SWRL language [HPSB+04]. This method permits
several analyses on the system without requiring the development of ad-hoc reasoning tools,
thus ensuring great flexibility and expandability.

First we show how complex concepts can be defined to identify misconfigurations and
anomalies. With the concept of MachineHostingUnsupportedDomains, asserted us-
ing the rule in Listing 7.4 we can identify a physical machine hosting a domain of a type while
running an hypervisor of a different type, e.g., a XEN domain and a KVM hypervisor. Since
such a domain would not be supported by the hypervisor, this situation represents an anomaly.� �
PhysicalMachine(?m), hostsVirtualDomain(?m,?dom),

hasHypervisorType(?dom,?htype), runsHypervisor(?m, ?hyp),
DifferentFrom (?hyp,?htype) -> MachineHostingUnsupportedDomain(?m)� �
Listing 7.4: SWRL rule 3, MachineHostingUnsupportedDomains definition.

Previously, we defined the DomainWithRemoteDisk concept, to gather all the domains
connected to a remote storage device. When considering network connected storage it can be
interesting to verify if the domain using it is able to access the network address to which the
storage is attached. For this reason we defined the following rule that works in the following� �
hostsVirtualDomain(?mac, ?dom), hasVirtualDisk(?dom, ?vdisk),

hasSource(?vdisk, ?file), hasTarget(?pool, ?file),
VirtualPool(?pool), hasSource(?pool, ?nas), hasAddress(?nas, ?ip)

hasAddress(?pint2, ?ip), hasPhysicalInterface(?mac, ?pint1),
isPhysicallyLinked(?pint1, ?pint2) -> reachesSource(?vdisk,
?pint2)� �

Listing 7.5: SWRL rule 4, reachesSource definition

way. We consider a physical machine mac that hosts the virtual domain dom which is using
a remote disk vdisk. vdisk has as source the file file which is the target of a virtual pool pool.
We check if the machine mac is connected, through a network connection, to the physical
machine nas which is the source of pool. Here we made some simplifications, since reaching
the network interface of the machine to which the disk is attached is not sufficient to state that
the disk is working properly, but it is a necessary condition. A more accurate analysis would
require checking the internal configuration of the physical machine.

7.5 A Unified Ontology for Verification

In this section we introduce our unified ontology that is suitable for modeling an IT system,
particularly a cloud infrastructure, and its security properties.

Since security is a complex matter we will discuss it at different levels, splitting our secu-
rity architecture into five main areas, each one with a different granularity, which allow us to
describe a system in more or less detail. First we describe the physical and virtual layers of the
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model which is suitable for representing a wide range of both real and virtual hardware. Then
we discuss the software and service levels that can be used to model the feature offered by a
server, last its security description level.

7.5.1 Physical Layer
The physical layer has been designed to describe the network containing the nodes which run
the IT resources used to implement the services. It is the ontological counterpart of the P-SDL
language described in Section 7.3.2.

7.5.2 Virtual Layer
To describe the virtual layer we included in our ontology the one described in Section 7.4,
using the import feature offered by OWL language. In particular we use the virtual and logical
elements to describe this layer. We note that there is a partial overlapping with the ontology
derived from P-SDL, both for the physical elements and for virtual domains - besides a rich
description capability for the physical layer, P-SDL provides a primitive support to describe
virtual machines as well). We used the class equivalence of OWL to relate equivalent classes
when applicable, thereby obtaining a coherent and more expressive description.

7.5.3 Software Layer
The software layer is used to connect the virtual to the physical and the service levels. In
fact it can relate either a virtual domain to a physical machine that hosts it or a software to a
service it provides. It is composed by a handful of classes (Software, OperatingSystem,
Hypervisor), related to each other by means of object properties such as runSoftware,
hostsDomain and providesService. Similarly as for the physical layer, this layer gets
input from a P-SDL model.

7.5.4 Service Layer
The service layer describes the choreography between services with the aim to create a bridge
between a WS-CDL description and OWL-S. The Service class is linked to the OWL-S
classes by class equivalence or subsumption. For our security analysis, we are also interested in
the interactions among service components. For this reason we modeled the ServiceChannel
class, which can also be used to attach security annotations to each communication channel. We
currently provide only a minimal ontology that relates WS-CDL to OWL-S, but we plan to go
into further details to be able to gain from the expressiveness of both languages (for a compar-
ative analysis between WS-CDL and OWL-S we refer to [CDMV09]).

7.5.5 Security Layer
To describe security related concepts, such as security goals and security mechanisms, we used
the ontology described in [HSD07] which describes assets, threats, vulnerabilities and counter-
measures. This ontology provides a general taxonomy for the security concepts, with the aim of
becoming the reference ontology in this field. Additionally, security concepts are related using
object properties. Resorting to logical reasoning it is possible to query the ontology to answer
questions like: Which security goal is protected on stored data using encryption? Which attack
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Figure 7.3: Choreography of the WS-CDL primer.

threaten data confidentiality? Security related concepts can be connected to the other layers
using object properties such as hasSecurityGoal or usesCountermeasure.

7.5.6 A Detailed Example
To demonstrate the validity of our approach we present an example service running on a physi-
cal network where some security mechanisms are in place. We then consider confidentiality as
a security property to be guaranteed among the service components and present the result of the
analysis.

Service Layer

As a reference example, we consider the WS-CDL Primer [RTF06]. This choreography de-
scribes a good purchasing scenario, whose roles and relationships are depicted in Figure 7.3. For
a detailed description of the choreography and a complete WS-CDL listing we refer to [RTF06].

The roles in the choreography (Buyer, Seller, CreditAgency and Shipper) are implemented
by real services which are composed by a set of software components. We present here the
complete list of components implementing each role:

• the Buyer (e.g., a private citizen) communicates through a web-browser;

• the Seller (e.g., a company) uses a web-server as a front-end and a database server which
contains a catalog of the products to be sold. In addition to this it has a backup server
which stores a copy of the database;

• the CreditAgency uses 3 different servers to manage the transactions, these servers pro-
vide the same functionalities and are mirrored for dependability purposes;

• the Shipper has its own server from which it manages shipping orders.

Network and Virtual Layers

The network where the example choreography is instantiated is shown in Figure 7.4. This
represents a (simplified) hosting provider with a network distributed in two locations, connected
through the Internet. In addition to this a personal computer is connected to the Internet to
represent a private citizen accessing the service from her home.
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Figure 7.4: Network level view of the primer.

In more detail, the provider network is partitioned into three layer-2 networks identified by
the switches SW1, SW2 and SW3. SW1 and SW2 are connected via a router R1, while SW3 is
connected to a router R2. An IPsec tunnel is available for communications between R1 and R2
(we assume they are connected through the Internet). Several hosts are attached to the switches,
and each host is able to run virtual machines.

The software components described in Section 7.5.6 are allocated in this way:

• the Buyer web browser runs on the personal computer;

• the Seller web-server and the Seller DB run in two different virtual machines on Host2;
the Seller BackupDB runs in a virtual machine on Host1.

• the CreditAgency servers run in different virtual machines, respectively on Host1, Host3
and Host5.

• the Shipper server runs in a virtual machine on Host5.

In addition, other services (Serv1, Serv2, Serv3) run in virtual machines on the same hosts, to
emphasize the multi-tenant architecture typical, e.g., of a cloud computing environment.

Security Analysis

In [HSD07], the authors show, among other examples, the CountermeasureByConfidentia-
lityOfData class, that classifies all the countermeasures protecting confidentiality of data.
With our ontology, it is possible to make a step further, and to retrieve the instances of these
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countermeasures, i.e. the actual countermeasures available in the system. In the example pre-
sented before, the same query presented in [HSD07] returns the IPsec channel between routers
R1 and R2.

As another example, we can extract from the model all the assets where, e.g., eavesdropping
may happen. Through the security ontology the reasoner infers the DataInTransit class
and, exploiting the other layers in the whole ontology, it deduces all the channels between
services and all the network segments underlying each service channel. For instance, the service
channel between Seller web-server and CreditAgency1 (as well as the network segments Host2–
SW1 and SW1–Host1) is subject to eavesdropping. We note that, by construction, the channels
between two virtual machines in the same host (e.g., between Seller web-server and Seller
DB) are not liable for eavesdropping, as the hypervisor protects such virtual channels. Similar
considerations apply to query the model for all the assets that may be protected by a specific
countermeasure, e.g., IPsec.

We conclude with a remark on the allocation of the Seller. As the Seller is allocated onto
3 servers, but there is no explicit description of the behavior and the interactions among them,
we perform a worst-case analysis and assume all communications may happen. Therefore, we
shall have 3 distinct communication channels respectively from Seller web-server to Seller DB,
from Seller DB to Seller BackupDB and from Seller web-server to Seller BackupDB. The latter
is probably useless, as the web-server probably will not directly communicate with the backup
DB. However this can not be deduced with the level of details provided by this model.

7.6 Conclusions and Final Remarks
This chapter discussed the role of ontologies in a virtualized environment, focusing on a secu-
rity related point of view. The report has presented a general overview of what ontologies are
and their advantages. Then details about an ontology for describing a virtualized environment
were illustrated, providing also a number of examples which allow several analyses of an IT
infrastructure. Then, a more complete ontology was presented, allowing not only to describe
virtual systems, but also physical ones and their security features. Furthermore, a real exam-
ple scenario was provided which showed how ontologies can be successfully used to perform
security analyses of a virtual network.

The previous sections showed how the expressive power of the ontologies can be applied in
the application domain of virtualized systems, allowing to describe complex virtual infrastruc-
tures using a more natural, easier and powerful formal language system compared to traditional
database languages such as SQL. They also proved that the reasoning facilities of this technol-
ogy can be used to easily perform several analyses of a system, in particular security analyses,
and consistency checking of configurations in an automatic way, thus simplifying the adminis-
trators’ job.
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Chapter 8

Automated Information Flow Analysis of Vir-
tualized Infrastructures

Chapter Authors:
Sören Bleikertz, Christian Cachin, Thomas Groß, Matthias Schunter (IBM)

8.1 Introduction

Large-scale virtualized infrastructures and cloud deployments are a common and still growing
phenomenon. The goals of server virtualization include high utilization of today’s hardware,
fast deployment of new virtual machines and load balancing through migration of existing vir-
tual machines. Virtualized infrastructures provide standardized computing, virtual networking,
and virtual storage resources. Correspondingly, infrastructure clouds provide simple machine
creation and migration mechanisms as well as seemingly unlimited scalability, while the costs
incurred are only proportional to the resources actually used.

The growth of IT infrastructures and the ease of machine creation have lead to substantial
numbers of servers being created (server sprawl). Furthermore, then led to large and com-
plex configurations that arise by rank growth and evolution rather than by advance planning
and design. Indeed, the configuration complexity often exceeds the analysis and management
capabilities of human administrators. We depict an example for a mid-size infrastructure in Fig-
ure 8.1. This, by itself, calls for automated security analysis of virtualized infrastructures. The
high complexity of an analysis is amplified when considering security properties such as isola-
tion, because then the analysis of individual resources must be complemented with an analysis
of their composition.

In addition, virtualization providers often aim at establishing multi-tenancy, that is, the ca-
pability to host workloads from different subscribers on the same infrastructure. Also, they
provide an open environment, in which arbitrary subscribers can register without trust between
them being justified. Therefore, we need to assume that workloads as well as VMs are under
the control of an adversary, and that an adversary will use overt and covert channels in its reach.

Industry partially approaches isolation with automated management and deployment sys-
tems constraining the users’ actions. However, these mechanisms can fail, may lack enforce-
ment, or can be circumvented by human intervention.
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Figure 8.1: Illustration of the overwhelming complexity of a mid-size infrastructure with 1,300
VMs.
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8.1.1 Contributions
The aim of this work is to automate information-flow analysis for large-scale heterogeneous
virtualized infrastructures. We aim at reducing the analysis complexity for human administra-
tors to the specification of a few well-designed trust assumptions and leave the extrapolation of
these assumptions and analysis of information flow behavior to the tools.

We propose an information flow analysis tool for virtualized infrastructures. The tool is
capable of discovering and unifying the actual configurations of different virtualization systems
(Xen, VMware, KVM, and IBM’s PowerVM) and running a static information flow analysis
based on explicitly specified trust rules. Our analysis tool models virtualized infrastructures
faithfully, independent of their vendor, and is efficient in terms of absence of false negatives as
well as adjustable false positive rates.

Our approach transforms the discovered configuration input into a graph representing all
resources, such as virtual machines, hypervisors, physical machines, storage and network re-
sources. The analysis machinery takes a set of graph traversal rules as additional input, which
models the information flow and trust assumptions on resource types and auxiliary predicates.
It checks for information flow by computing a transitive closure on an information flow graph
coloring with the traversal rules as policy. From that, the tool diagnoses isolation breaches and
provides refinement for a root causes analysis. The challenge of information flow analysis for
virtualized infrastructures lays in the faithful and complete unified modeling of actual configu-
rations, a layered analysis that maintains completeness and correctness through all stages, and
a suitable refinement to infer the root causes for isolation breaches.

Our method applies strict over-abstraction to minimize false negatives. This means that we
only assume absence of flows for components that are known to isolate. This enables us to
reduce the analysis correctness to the correctness of the traversal rules. As this method accepts
an increase in the false positive rate, we allow administrators to fine-tune the trust assumptions
with additional traversal rules and constraint predicates to obtain a suitable overall detection
rate.

We report on a case study for a mid-sized infrastructure of a financial institution production
environment in Section 8.7.

8.1.2 Applications
Our technique is applicable to the isolation analysis of complex configurations of large virtual-
ized datacenters. Such datacenters include different types of server hardware, implementations
of virtual machine monitors, as well as physical and virtual networking and storage resources.

Let us consider a simplified version of such a configuration in Figure 8.2(a). This simplified
version includes the following hardware: A IBM pSeries server, an x86 server, a virtual net-
working infrastructure providing VLANs, and a Storage-Area Network (SAN) providing virtual
storage volumes. The virtual resources (networks, storage, machines, and virtual firewalls) are
depicted inside these hardware resources. Keep in mind that sizeable real-world configurations
contain thousands of virtual machines and hundreds of thousands of connections.

Figure 8.2(b) depicts a desired isolation topology for this example: we have three example
virtual security zones “Intranet”, “DMZ”, and “Internet”. Furthermore, we permit communica-
tion between Intranet and DMZ that is mediated by a trusted guardian, such as a virtual firewall
vFWA2. Similarly, firewall vFWA1 moderates and restricts the communication between the
DMZ and Internet zones, respectively. The isolation analysis must check that there do not ex-
ist components that connect two zones or are shared by two zones, while not being trusted to
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Figure 8.2: An example setup of a virtualized datacenter with an isolation policy for three
virtual security zones.

sufficiently mediate direct and covert information flows.
Note that we focus on validating the virtualized infrastructure’s configuration. Once we have

guaranteed that no undesired information flow exists except through the specified guardians,
we would need to employ techniques from firewall filtering analysis, e.g. [MK05, MWZ00,
Woo01], to ensure that the guardians have been configured correctly.

8.2 Related Work
Virtual systems introduce several new security challenges [GR05]. Two important drivers that
inspired our work are the increase of scale and the transient nature of configurations that render
continuous validation more important.

The first area of related work is security of virtual machine monitors. This knowledge is
needed to underpin the user’s individual decisions whether to trust a given component. Analysis
of well-known attacks such as jailbreaks [Woj08] allows one to detect vulnerable configurations.
This includes information leakage vulnerabilities of today’s infrastructure clouds that allow
covert or overt communication between multiple tenants that should be isolated. Examples
include co-hosting validation [RTSS09b] and cache-based side channels [Aci07, Per05].

To our knowledge, there do not exist any research contributions on the static high-level
information flow analysis in virtualized infrastructures. Still, we draw inspiration from infor-
mation flow analysis such as research in separation [KF91, Rus82], channel control [Rus81],
and non-interference [GM82, Gra91, Man01, Rus92]. We discuss these influences on our own
definition on structural information control in Section 8.3. More often than not, we find research
in this space focused on the information flow between high and low variables and not on the
information flow in larger topologies.

A second area of related work is reachability analysis in networks and the related config-
uration analysis of firewalls. Our isolation analysis draws from known work on reachability
analysis. Analyzing firewalls and complex network infrastructures allows one to decide to
what extent two known networks are connected. In particular, Al-Shaer et al. [ASMEAE08,
KL09, XZM+05] analyze entire network infrastructures including packet filters, transformers,
and routers. In [BSP+10], it was shown how reachability analysis can be applied to infrastruc-
ture clouds. Firewall configuration analysis allows the understanding and validation of firewall
rules [MK05, MWZ00, Woo01]. While this work focuses on the TCP/IP level, our goal is to
ensure “physical” isolation by ensuring that VLANs and virtual networks are disjoint. This ap-
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proach is similar to the approach proposed in [KSS+09]. If media-layer networks are connected
while isolation is implemented on the TCP/IP level, we see potential to further extend our work
by using these concepts for TCP/IP isolation analysis that is then fed into our analysis concept.

This area of research is also important for modeling the behavior of imperfect guardians.
Whereas this paper assumes that guardians always make correct decisions and stop dangerous
information flow, reachability and firewall configuration analyses allow one to model imper-
fections as explicit traversal rules. Guardians with packet inspection and stateful analysis may
even discover illegal information flow hidden in legal flows.

Whereas earlier security analyses considered stand-alone elements of a virtualized infras-
tructure, a tool-supported information flow analysis of a full virtualized environment is still
missing, not to speak of complex heterogeneous and large-scale virtualized infrastructures with
a diversity of underlying platforms. The research areas of information flow and reachability
analysis underpin our efforts, yet so far, they have not produced a mechanized approach for this
problem statement.

8.3 A Model for Isolation Analysis

8.3.1 Flow Types
In the quest for a suitable requirements definition, we now review information flow types [SM03,
Lam73, RTSS09b, GM82, Gra91, Rus92, Man01, HY86, Rus82, KF91, Jac90].

We consider overt and covert channels. Covert channels [Lam73] are not intended for
information transfer at all, yet seem to be a common phenomenon in virtualized infrastructures.
Requiring the absence of all covert channels from hypervisors, physical hosts and resources
will render many resulting system impractical. Therefore, we allow administrators to specify a
certain amount of covert channel information flow as tolerable.

An overt channel is intended for communication; a principal can read or write on that chan-
nel within the limits of some access control policy.

Lampson [Lam73] introduced the term covert channel as a channel not intended for infor-
mation transfer at all. Consider a malware in VM Alice which attempts to transfer information
to another instance of the malware in VM Bob, both hosted on the same hypervisor. The mal-
ware on VM Alice can, for instance, monopolize a resource1 to transmit a bit observed by the
malware on VM Bob in performance or throughput decrease.

We perceive covert channels to be a common phenomenon in virtualized infrastructures.
Requiring the absence of all covert channels from hypervisors, physical hosts and resources,
will render many resulting system impractical. Therefore, we allow administrators to specify a
certain amount of covert channel information flow as tolerable.

Requirement Definition

We informally stated our security goal as isolation between zones, which sounds similar to non-
interference [GM82, Gra91]. This requirement enforces that actions in one zone do not have
any effect on subsequent behavior or outputs in another zone.

The transitivity of non-interference renders it, however, unsuitable to model our setting, in
which information flow via guardians may be permitted, whereas the corresponding direct flow

1Examples include reserving a bus, launching expensive computations, flooding a cache, sending many network
packets.
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is disallowed. Agreeing to the arguments of Rushby [Rus92] and Mantel [Man01], we would
need intransitive non-interference [HY86] to start with. Furthermore, the existing definitions
are based on traces of steps and, thus, inherently dynamic2, whereas we aim at a high-level static
information flow analysis (its topology and communication links). Therefore, we preclude a
step/trace-based non-interference analysis.

Another candidate is the analysis for separation, e.g. [Rus82, KF91]: one removes all
guardians from the system and verifies that the remaining parts are perfectly separated; however
this approach was criticized by Jacob [Jac90].

The concept of channel control [Rus81] sounds interesting, as it captures our requirement
to specify exceptions to the general zoning requirements. For instance, two zones should not
communicate with each other unless a guardian mediates and filters the communication. In our
case, however, we are not studying single channels, but a complex topology of channels.

Information Control

We note (1) that we need intransitivity and (2) that channel control [Rus81] captures our require-
ment to specify exceptions to the general zoning requirements. Thus, we introduce a property
we call structural information control that essentially lifts channel control to topology:

Definition 1 (Structural Information Control) A static system topology provides structural
information control with respect to a set of information flow assumptions on system nodes if
there does not exist an inter-zone information flow unless mediated by a dedicated guardian.

Observe that we aim at the detection of isolation breaches (information flow traces), which
renders our approach loosely similar to model checking, and not at the verification of absence
of information flow, which would be similar to theorem proving.

8.3.2 Modeling Isolation

Modeling Configurations

Our static information flow analysis is graph-based. Each element of a virtualization configu-
ration is represented by (at least) one vertex (VMs, VM hosts, virtual storage, virtual network).
Connections between elements are represented by edges in the graph and model potential in-
formation flow. Note that our approach requires completeness of the edges: While not all edges
may later actually constitute information flows, we require that all relations that allow informa-
tion flow are actually modeled as an edge.

The vertices of the graph are typed: our model distinguishes VM nodes, VM host nodes,
storage and network nodes, etc.

Definition 2 (Graph Model) Let T ⊂ Σ+ a set of vertex types and P ⊂ Σ+ a set of vertice
properties. A virtualization graph model contains a set of typed vertices V ⊂ V := (Σ+×T×P)
and a set of edges E ⊆ (V × V ). A vertice v is a triple of label, type and properties set
(l, t, p) ∈ V. An edge e is a pair of start and end vertice (vi, vj) ∈ (V × V ). A set of edges E
is called valid with respect to a set of vertices V ′, if E ⊆ (V ′ × V ′). A graph (V̄ , Ē) is called
a valid subgraph of graph (V,E), if V̄ ⊆ V and Ē ⊆ E is valid with respect to V̄ . An edge
set ~E ⊆ E is called a path if the edges and their respective vertices form a connected valid
sub-graph of (V,E).

2To that end, Haigh and Young [HY86] have shown that it is necessary to analyze the complete trace of actions
subsequent to a given action to validate that the action is allowed to interfere with another zone.
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We represent complex structures of the virtualization infrastructure by sub-graphs of multi-
ple vertices. For instance, we construct guardians such as firewalls with complex information
flow rules by a firewall vertex connected to multiple port vertices.

Information is output at one or more information source nodes, propagates according to
traversal rules along the nodes and edges of the graph, and is consumed at an information sink.
We treat information sources as independent and information as untyped and unqualified.

Definition 3 (Information Sources and Sinks) For a set of vertices V , we define a set of in-
formation sources V̂ ⊆ V and a set of information sinks V̆ ⊆ V . A vertice v̂ ∈ V̂ is called
information source, a vertice v̆ ∈ V̆ information sink.

Modeling Information Flow Assumptions

A traversal rule models an assumption on information flow from one vertex type to another
vertex type. For instance, a traversal rule will specify that if a VM host is connected to a storage
provider, this edge constitutes a direct information flow and is to be traversed. Also, a traversal
rule may specify that if two VMs are connected to the same VM host, this implies the risk of
covert channel communication and, therefore, constitutes an information flow.

Definition 4 (Traversal Rules) For the set of vertice types T ⊂ Σ+ and a set of vertice prop-
erties P ⊂ Σ+, the traversal rules are a propositional function of source type, destination type,
source properties, and destination properties over a type relation R and a predicate P :

fT,P : (T× T× P× P)→ {stop, follow} :

fT,P(ti, tj, pi, pj) :=

{
(ti, tj) ∈ R ∧ P (pi, pj) follow

(ti, tj) 6∈ R ∨ ¬P (pi, pj) stop

We call traversal rules simple, if P is always true.

Definition 5 (Completeness) For the set of vertice types T ⊂ Σ+ and a set of vertice properties
P ⊂ Σ+, traversal rules fT,P are called complete if R and P associated to fT,P are complete. We
call a default rule a completion of incomplete traversal rules fT,P, if it maps all undetermined
cases to either stop or follow. We call non-default rules explicit.

Whereas completeness is a property of a set of traversal rules, we define coverage as in how far
a set of traversal rules determines the analysis of a graph deterministically without invoking the
default rule.

Definition 6 (Coverage) For the set of vertice types T ⊂ Σ+ and a set of vertice properties
P ⊂ Σ+, consider a virtualization graph (V,E) as in Def. 2 and the subset of edges E ′ ⊆ E
that are matched by explicit traversal rules fT,P. We call the quotient of number of explicitly
matched edges to total number of edges coverage: c = |E ′| / |E|
Observe that a complete coverage, that is, c = 100% is important for achieving a low false-
positive rate.

The traversal rules specify general assumptions on information flow in virtualized envi-
ronments and, thereby, embodies a part of the overall trust assumptions. The specification of
traversal rules is therefore orthogonal to the isolation policy of a system. Whereas our system
comes with a root set of traversal rules as base line trust assumptions, we allow users to specify
multiple sets of user-defined traversal rules and thereby user-defined trust assumptions.
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Similar to the tainted variable method for static information flow analysis, we employ the
metaphor of color propagation. We associate colors to information sources v̂ ∈ V̂ and to
vertices that have received information flow from a certain source by the evaluation of traversal
rules fT,P. The total information flow of a system is the transitive closure of the graph traversal
governed by the traversal rules fT,P. This means, that the information flow from any source
to any sink can be efficiently statically analyzed by a reachability analysis between source and
sink.

We define graph coloring recursively.

Definition 7 (Graph Coloring) Let traversal rules fT,P, a graph (V,E) and an information
source v̂ ∈ V̂ ⊆ V with color c be given. Then, v̂ is colored with c by definition. A vertice
v ∈ V is colored with c, if there exists an edge e = (·, v) ∈ E, which is colored with c. An edge
e = (vs, vd) ∈ E with vs = (·, ts, ps) and vd = (·, td, pd) is colored with c iff (i) vs is colored
with c and (ii) fT,P(ts, td, ps, pd) = follow.

8.4 Isolation Analysis of Virtual Infrastructures

We apply the foundations from the preceding section to virtualized infrastructures. Our ap-
proach (see Figure 8.3) consists of four steps organized into two phases: 1) building a graph
model from platform-specific configuration information and 2) analyzing the resulting model.
The graph model is formally defined in Def. 2.

Figure 8.3: Overview over the analysis flow.

The first phase of building a graph model is realized using a discovery step that extracts
configuration information from heterogeneous virtualized systems, and a translation step that
unifies the configuration aspects in one graph model. For the subsequent analysis, we apply
the graph coloring algorithm defined in Def. 7 parametrized by a set of traversal rules and a
zone definition. The assessment of the resulted colored graph model enables a diagnosis of the
virtualized infrastructure with respect to isolation breaches.

8.4.1 Discovery
The goal of the discovery phase is to retrieve sufficient information about the configuration of
the target virtualized infrastructure. To this end, platform-specific data is obtained through APIs
such as VMware VI, XenAPI, or libVirt, and then aggregated in one discovery XML file. The
target virtualized infrastructure, for which we will discover its configuration, is specified either
as a set of individual physical machines and their IP addresses, or as one management host that
is responsible for the infrastructure (in the case of VMware’s vCenter or IBM pSeries’s HMC).
Additionally, associated API or login credentials need to be specified.
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For each physical or management host given in the infrastructure specification, we will
employ a set of discover probes that are able to gather different aspects of the configuration. We
realized multiple hypervisor-specific probes for Xen, VMware, IBM’s PowerVM, and LibVirt.
Furthermore, if the management VM is running Linux, we also employ probes for obtaining
Linux-specific configuration information. Currently, we do not discover the configuration of
the physical network infrastructure. However, the framework easily be extended beyond the
existing probes or use configuration data from a third-party source.

8.4.2 Transformation into a Graph Model
We translate the discovered platform-specific configuration into a unified graph representation
of the virtualization infrastructure, the realization model. The realization model is an instance
of the graph model defined in Def. 2. It expresses the low-level configuration of the various vir-
tualization systems and includes the physical machine, virtual machine, storage, and network
details as vertices. We generate the realization model by a translation of the platform-specific
discovery data. This is done by so-called mapping rules that obtain platform-specific configu-
ration data and output elements of our cross-platform realization model. Our tool then stitches
these fragments from different probes into a unified model that embodies the fabric of the entire
virtualization infrastructure and configuration.

For all realization model types in T (cf. Def. 8), we have a mapping rule that maps
hypervisor-specific configuration entries to the unified type and, therefore, establishes a node in
the realization model graph. We obtain a complete iteration of elements of these types as graph
nodes. The mapping rules also establish the edges in the realization model.

This approach obtains a complete graph with respect to realization model types. Observe
that configuration entries that are not related to realization model types are not represented in
the graph. This may introduce false negatives if there exist unknown devices that yield further
information flow edges. To test this, we can introduce a default mapping rule to include all
unrecognized configuration entries as dummy nodes.

8.4.3 Coloring through Graph Traversal
The graph traversal phase obtains a realization model and a set of information source vertices
with their designated colors as input. According to Def. 7, the graph coloring outputs a colored
realization model, where a color is added to a node if permitted by an appropriate traversal rule.
We use the following three types of traversal rules (see Def. 4 and the definition of traversal
rules below) that are stored in a ordered list. We apply a first-matching algorithm to select the
appropriate traversal rule for a given pair of vertices.

Flow rules model the knowledge that information can flow from one type of node to another
if an edge exists. For example, a VM can send information onto a connected network. These
rules model the “follow” of Def. 4. Isolation rules model the knowledge that certain edges
between trusted nodes do not allow information flow. For example, a trusted firewall is known to
isolate, i.e., information does not flow from the network into the firewall. These rules model the
“stop” of Def. 4. Default rule means that ideally, either isolation or else flow rules should exist
for all pairs of types and all conditions, that is, we want to achieve complete coverage according
to Def. 6: For any edge and any two types, the explicit traversal rules should determine whether
this combination allows or disallows flow. In practice, the administrator may lack knowledge for
certain types. As a consequence, we included a default rule as completion. Here, we establish
a default flow rule: whenever two types are not covered by an isolation or flow rule, then we
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default to “follow”. To be on the safe side, i.e., reducing false negatives, we assume that flow is
possible along this unknown type of edges.

Given this set of rules, we then traverse the realization model by applying the set of traversal
rules and color the graph according to information flows from a given source. The traversal
starts from the information sources and computes the transitive closure over the traversal rule
application to the graph.

8.4.4 The Traversal Rules
The graph coloring algorithm requires a set of traversal rules that model information flows,
isolation properties, and trust assumptions. We will propose a set of rules and explain their
purposes, and defer the correctness argument and a detailed discussion to Section 8.5.2.

Definition 8 (Traversal Rule) Let F be a set of follow types {stop, follow}, T′ ⊂ T be a set of
realization model types {Port, NetworkSwitch, PhysicalSwitch, ManagementOS, PhysicalDe-
vice, VirtualMachine, VirtualMachineHost, StorageController, PhysicalDisk, FileSystem, File,
any}, and D be a set of flow directions {⇒,⇐,⇔}, where⇒ and⇐ denote a unidirectional,
and⇔ a bi-directional flow. A traversal rule is a tuple (f, t0, t1, d, P, g) with f ∈ F , t0, t1 ∈ T′,
d ∈ D, P is a predicate over properties and colors of the realization model, and g is a color
modification function. During graph coloring (see Def. 7), g can transform the color c of a
colored vertex v̂ while coloring a new vertex v, i.e., c(v) = g(c(v̂)).

The traversal rules specified in Table 8.1 are a ordered list of rules (as defined in Def. 8). In
case the condition is left empty, a true predicate is assumed, and in case the color modification
is empty, g is the identity function.

Definition 9 (Matching Rule) Given a traversal rule (f, t0, t1, d, P, g) as defined in Def. 8 and
a source and destination vertex from the graph traversal: vs and vd respectively. The rule
matches iff i) (t0 = t(vs) ∨ t0 = any) ∧ (t1 = t(vd) ∨ t1 = any) where t(v) denotes the type of
a given vertex v, ii) d ∈ {⇒,⇔}, iii) P = true.

The first-matching algorithm iterates over the ordered list of traversal rules (Table 8.1) and
applies the matching rule defined in Def. 9. If the matching evaluates to true, the iteration
stops and the matched rule is returned. The matching of the traversal rules induces a function
representation of the traversal rules as defined in Def. 4.

Our trust assumptions are specified in the rules namely, Rule 1, Rule 2, Rule 3, and Rule 4.
These model that VLANs are isolated on physical switches, that the privilege VM and the
physical machine are trusted and do not leak information, and that we exclude cross-VM covert
channels (see Section 8.5.2).

Rule 5 simply stops an information flow if a network port is disabled. Rule 6 and Rule 7
model the VLAN en- and decapsulation of network traffic. Traffic with a VLAN tag is modeled
as a new color vlan with the VLAN tag appended, which is created in case of encapsulation and
removed in case of decapsulation. In the case of VMware, the VLAN tag for a VM is modeled as
a non-zero defaultVLAN property of the port. Rule 8 specifies that if a port is marked as trunked,
which is required in the case of VMware to allow traffic from the VMs to the physical network
interface, the VLAN traffic is also allowed to flow. Otherwise, if the vlan color tag mismatches
the port’s VLAN tag, we isolate and stop the information flow (see Rule 9). This also applies
to Rule 10, which is the default isolation rule for VLAN traffic, if one of the previous rules did
not match.

TClouds D2.3.1 Page 72 of 89



D2.3.1 – Requirements, Analysis, and Design of Security Management

Table 8.1: Traversal Rules

# Type Flow
Condition
+Color Modification

Trust Rules

1 stop PhysicalSwitch⇒ Port Has any vlan color
2 stop ManagementOS ⇔ any
3 stop PhysicalMachine⇔ PhysicalDevice
4 stop V irtualMachine⇔ V irtualMachineHost

Network Switches

5 stop Port⇔ NetworkSwitch Port is disabled

VLAN

6 follow Port⇒ NetworkSwitch Port has VLAN tagging with tag $VLAN
+ Create vlan-$VLAN

7 follow NetworkSwitch⇒ Port Port’s VLAN tag matches color’s one
+Remove vlan-$VLAN

8 follow NetworkSwitch⇒ Port Port is trunked
9 stop NetworkSwitch⇒ Port Port’s VLAN tag mismatches color’s one

10 stop NetworkSwitch⇒ Port Has any vlan color

Storage

11 stop StorageController ⇒ PhysicalDisk
12 stop FileSystem⇒ File

Default

13 follow any ⇔ any

On the storage side, we model the behavior of the storage controller not to leak information
from one disk to another with Rule 11. Furthermore, the filesystem will not leak information
from one file to another (Rule 12).

The default rule Rule 13 allows any information flow that was not handled by a previous
rule due to the first-matching algorithm.

We make three observations about the traversal rules: First, administrators can modify ex-
isting and specify further traversal rules, for instance, to relax trust assumptions or to model
known behavior of specific components. Second, traversal rules serve as generic interface to
include analysis results of other information flow tools into the topology analysis (e.g., firewall
information flow analysis). Third, the behavior of explicit guardians (see Def. 1) is introduced
by traversal rules specific to these nodes. For instance, the guardians in the exemplary Fig-
ure 8.2, Section 8.1.2, would receive a stop-rule.

8.4.5 Detecting Undesired Information Flows

The goal of the detection phase is to produce meaningful outputs for system administrators. For
detecting undesired information flows, we color a set of information sources that mark types of
critical information that must not leak. The idea of the color spill method is to introduce nodes
called “sinks” (see Def. 3). Each sink is colored with a subset of the colors corresponding to
the information that it is allowed to receive. In practice, the administrator provides a list of
clusters or zones that shall be isolated, and we add/mark sources and sinks according to the
isolation policy with respect to these zones. In our example from Figure 8.2, Section 8.1.2, we
would mark nodes from the zones “Intranet” (VMB1, V MB2, V MB3) and “Internet” (VMB4)
as sources and the guardians of the opposite zones (vFWA1, vFWA2) as sinks, to determine
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isolation breaches in both directions. After the transitive closure of the traversal rules, we
check whether any additional colors “spilled” into a given sink. If a sink gets connected to
an additional color, then we have found a potential isolation breach. You could imagine the
dedicated color sinks as a honeypot, waiting for colors from other zones to spill over.

Observe that the detection of a color spill only indicates the existence of a breach and be-
tween which zones (source-sink pairs) it has occurred. The color flow can be visualized and of
some use for administrators to fix the problem. In addition, we study different refinement meth-
ods for root-cause analysis, in order to pinpoint critical edges responsible for the information
flow in a industry case study (Section 8.7).

8.5 Security of Information Flow Analysis
Definition 10 (System Assumptions) We assume correctness of discovery/translation and iso-
lation behavior as defined in Section 8.4.4.

• Completeness of Discovery: We assume that the configuration output of virtualized in-
frastructures contains all elements that might solicit information flow (cf. Section 8.4.1)

• Correct Translation Modules: We assume that the discovery modules analyzing concrete
systems are capable to correctly identify configuration elements that translate to vertices
and edges in the realization model (cf. Section 8.4.2).

• Hypervisor Separation: We assume that the hypervisor sufficiently prevents cross-VM
information flow through covert channel down to a tolerable level (cf. Rule 4, Sec-
tion 8.4.4).3

• VLAN Separation by Physical Switches: We assume that physical switches isolate differ-
ent VLANs from each other (cf. Rule 1, Section 8.4.4).

8.5.1 Reduction to Correctness of the Traversal Rules
The graph coloring establishes the following events through a transitive closure of traversal
rules fT,P over a graph (V,E) with sources V̂ and sinks V̆ .

Definition 11 (Events) Wlog., we model admissible colors of an information sink v̆ ∈ V̆ as
colors associated with v̆. Then we have:

• We call an event B an isolation breach if a information sink v̆ ∈ V̆ is colored with an
inadmissible color of a information source v̂ ∈ V̂ such that v̂ 6= v̆.

• We call an event A an alarm if an isolation audit reports an information flow between a
distinct information source v̂ ∈ V̂ and information sink v̆ ∈ V̆ .

• We call the set of events ¬A ∧ B a false negative.

• We call the set of events A ∧ ¬B a false positive.

Corollary 1 (Structural Information Control) Under the assumptions from Def. 10 and cor-
rect traversal rules fT,P, from the absence of false negatives in an isolation analysis (¬A∧B =
∅) follows that a breach of structural information control is indicated by an alarm event A.

3This assumption is modeled by the hypervisor traversal rules and can be explicitly specified by administrators.
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Because we modeled the mediation by dedicated guardians explicitly by traversal rules and
inter-zone information flow by B events, this is by construction.

Note that the goal of the analysis system is to detect isolation breaches, that is, breaches
of structural information control. We cannot prove an absence of information flow, i.e., verify
structural information control, but only detect attack states. We optimize the detection thereof
by minimizing the false negative rate through reduction to correct traversal rules (making sure
we miss as few breaches as possible) and maximizing the Bayesian detection rate through miti-
gation of false positives (finding the actual needles in the haystack).

Theorem 1 (Reduction to Traversal Rules) The correct isolation modeling by traversal rules
fT,P implies absence of false negatives.

We prove Theorem 1 by contradiction and induction over the length n back-trace graph
traversal. The proof by itself is straight-forward as graph coloring (Def. 7) is a recursive defini-
tion.

Proof 1 Let sets of types T and properties P, a valid graph (V,E) and information sources V̂
and sinks V̆ be given.

Suppose a false negative event N ∈ (¬A∧B) 6= ∅. By definition, there exists a breach, that
is a sink v̆ ∈ V̆ for which holds that it is colored by a source v̂ ∈ V̂ , v̂ 6= v̆.

Initialize a set ~E = ∅.
Induction start n = 1: the sink v̆ is colored because of the breach event B.
Assume the induction statement true for n − 1: A colored vertice vn−1 could only have been
colored if

(a) vn−1 is source v̂ with the corresponding color (then we are done and output ~E) or

(b) there exists an edge e = (vn, vn−1) with vn = (·, tn, pn) and vn−1 = (·, tn−1, pn−1) for
which holds: vn is colored and the traversal rules fT,P(tn, tn−1, pn, pn−1) evaluate to
follow. Accumulate ~E := ~E ∪ {e}.

If the induction succeeds, then ~E is a construction of a path between source v̂ and sink v̆,
thus an alarm event, A. We obtain a contradiction against N ∈ ¬A.

Consequently, for any case in which no sink-source path can be constructed, there exists an
edge e for which the traversal rules fT,P evaluate to stop. This reduces the false negative to the
correctness for the traversal rules.

8.5.2 Correctness of the given Traversal Rules
The correctness of the traversal rules from Table 8.1, Section 8.4.4 remains to be shown, where
we need to analyze on two levels: (1) correctness of individual rules and (2) correctness of their
composition.

Individual Rules

We examine the traversal rules in detail in this section. We first highlight the most important
points and then illustrate three specific issues.

• Network: We model correct implementation of physical switches (Rule 5), VLAN en-
and decapsulation and lift the properties of cryptographic secure channels (e.g., [CK02,
MV09]) to VLAN tags (Rules 1, and 8, to 10).
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• Physical Machine, Hypervisor, VM Stack: We claim secure isolation by management OS
and physical machine (Rules 2 and 3) as well as cross-VM isolation (Rule 4). The former
rules are elementary for virtualization security, the latter rule is arguable as it models
the hypervisor’s multi-tenancy capability and needs to be reconsidered depending on the
actual environment (cf. [RTSS09b, Aci07] and discussion below).

• Storage: We model secure separation by physical disks as well as by the file system
(Rules 11 and 12), where the latter rule is systematically enforced by virtualization ven-
dors (e.g., [VMw06]) and can be checked automatically [YTEM06].

First, let us analyze the rules for network switches and VLAN traffic. Rule 5 assume a
correct implementation of an isolation by network switches for switched-off ports. Rules 6
and 7 establish the VLAN en- and decapsulation by network switches and are interesting for the
security analysis. The rules assign a VLAN-specific color to information flow for in-ports with
VLAN tagging and only allow information traversal at out-ports with matching VLAN tags.
This models the VLANs’ traffic separation by encryption lifted to VLAN tags as well as a cross-
session key separation assumption, standard for secure channels: messages encrypted under
one VLAN tag cannot interfere with messages encrypt under other VLAN tags and can only be
decrypted under the same VLAN tag. We can derive these properties from research on secure
channels and their parallel composition (in cryptography for instance Canetti and Krawczyk’s
work on UC secure channels [CK02]; in formal methods for instance Mödersheim and Viganò’s
formalization of secure pseudonymous channels [MV09].) Rule 9 stops information flow at
ports with non-matching VLAN tags accordingly. Rule 8 has information flow follow through
for trunked VLAN ports. Otherwise, we assume that the network and physical switches securely
configure and implement VLAN traffic isolation for flows from switch to port (Rules 10 and 1).
We conclude that these assumptions are natural and model correct network behavior.

Second, let us consider the stack of physical machine, hypervisor and VMs. Rules 2 and 3
make the assumptions that a management OS and physical host provide secure isolation and that
all information flow is accounted for explicitly. These assumptions are necessary for virtual-
ization security, as information leakage from these components can subvert the entire system’s
security, and model standard trust assumptions. Rule 4 is interesting as it assumes that hypervi-
sors sufficiently separate VMs against each other, that is, that information flow through cross-
VM covert channels can be neglected. Research results exist that highlight cross-VM covert
channels, for instance [RTSS09b, Aci07]. Therefore, this trust assumption on the hypervisor’s
multi-tenancy capability must be subject to thorough debate.4 Whereas the isolation assump-
tions on physical machine and management OS are natural and well founded, we conclude that
the modeling of covert channels is a key trust decision for the hypervisor model.

Third, let us consider the information model for storage. Rule 11 models that the stor-
age controllers are capable of separating information flow to physical disks, whereas Rule 12
establishes that the file system prevents cross file information flow through its access control
enforcement. The former property is systematically enforced by virtualization vendors, such
as VMware [VMw06] that do not allow reconfiguration of storage back-ends for VMs. The
latter property found attention in research and can be checked with tool support [YTEM06].
We conclude that both assumptions are natural to make.

4For high-security environments, we recommend to set this rule to follow and therefore only relying on physical
separation, yet dismissing hypervisor multi-tenancy.
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Correct Traversal Rule Composition

The composition establishes the following robustness principles:

• Explicit Knowledge Model: The explicit traversal rules model all and only known facts
about information flow and isolation. Thus, traversal rules focus on preventing false
negatives introduced by invalid assumptions.

• Strict Over-abstraction: When in doubt, the traversal rules must be a conservative esti-
mate towards information flow, that is, model a super-set of potential information flow.
By that, traversal rules will never introduce false negatives at the cost of additional false
positives.

• Default-Traversal Behavior: The default rules establishing completion on the traversal
rules must all be default-follow rules, that is, evaluate undetermined cases to 1 and log
such results. Thus, the completion will only introduce false positives but never false
negatives.

We conclude that the traversal rule robustness principles are all lined up to fence off false neg-
atives, yet at the cost of false positives. Whereas this trade-off benefits a conservative security
analysis, it impacts its effectiveness, as becomes manifest in its overall detection rate.

8.5.3 Overall Detection Rate
The overall detection rate of an analysis system establishes a relation between alarm and breach
events, A and B, as defined in Def. 11. We analyze the effectiveness of the analysis system,
in particular with respect to rejection of false positives, whose influence through the base-rate
fallacy rate was established by Axelsson [Axe00] in the area of intrusion detection systems.

Definition 12 (Detection Rates) The detection rate is P[A|B], alarm contingent on breach, ob-
tainable by testing the analysis system against scenarios known to constitute a B event. The
false alarm rate is P[A|¬B], the false positive rate, obtainable analogously. The false negative
rate is P[¬A|B] = 1−P[A|B]. The Bayesian detection rate is P[B|A], that is the rate with which
an alarm event implies an actual breach event. The all-is-well rate is P[¬B|¬A], that is the rate
with which the absence of an alarm implies that all is well.

Our goal is to maximize the Bayesian detection rate and the all-is-well rate, which we determine
with Bayes Theorem:

P[B|A] =
P[B] · P[A|B]

P[B] · P[A|B] + P[¬B] · P[A|¬B]

If we assume that the rate of breaches is low compared to the rate of non-breaches, P[B] �
P[¬B], we see that the false positive rate P[A|¬B] dominates the denominator of the Bayesian
detection rate. This analysis asks for caution. Even though the focus on absence of false neg-
atives implies a conservative security analysis, the presence of false positives can diminish the
effectiveness of the analysis system easily.

Conjecture 1 The correctness of the traversal rules determines the absence of false negative
events. The coverage of explicit correct traversal rules determines the absence of false positive
events.
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Although the absence of false negatives is important for the system’s security, effectiveness
requires the absence of false positives, as well. This is to ensure that administrators are able to
find the actual breaches in the set of all alarm events. Therefore, administrators need to fine-tune
the traversal rules to maximize coverage and, thus, the Bayesian detection rate.

8.5.4 Discussion

The transitive closure over the graph coloring securely lifts the isolation analysis to an analysis
of the traversal rules fT,P. Therefore, the correctness of the traversal rules becomes a make-or-
break criterion for the analysis method and impacts the detection rate.

We observe a complexity reduction: the simple traversal rules have a complexity of their
relation R ⊆ T × T. In practice, |T| � |V | as well as |T|2 � |E| ≤ |V |2, with the number
of properties set for fT,P being small. Therefore, the complexity of analyzing the traversal rules
fT,P is much smaller than the complexity of isolation analysis. This allows administrators to
explicitly model and thoroughly and efficiently check their knowledge and trust assumptions
about information flow and isolation.

Because our traversal rules base on the principle of over-abstraction, that is, resort to
default-traversal in undetermined cases, the method excludes false negatives, at the cost of
additional false positives. The method is therefore always on the conservative side, even though
we are well aware that the false positive rate impacts the overall detection rate [Axe00]. We
provide the general analysis framework and offer user-defined traversal rules to fine-tune the
analysis method to reduce false positives and maximize the Bayesian detection rate. Also, we
experiment with refinement methods for a subsequent root-cause analysis to pinpoint critical
information flow edges.

In principle, our tool is in a similar situation as the first intrusion detection systems. There do
not exist standardized data sets to quantify and calibrate false positive and false negative rates.
We approach this situation by obtaining real-world data from third parties and are currently
testing the analysis method in sizable real-world customer deployments, such as the case study
discussed below, to establish the detection rates.

8.6 Implementation

We have implemented a prototype of our automated information flow analysis in Java that con-
sists of roughly twenty thousand lines of code. Furthermore, we have additional scripts written
in Python that perform post-processing for visualization purposes and refinement for root-cause
analysis. The prototype consists of two main programs, that is, the discovery, and a processing
and analysis program. The result of the discovery is written into an XML file and is used as the
input for the analysis.

8.6.1 Discovery

The functionality of the discovery and its different probes were already outlined in Section 8.4.1.
There exist different ways to implement a discovery probe. A probe can establish a secure
console (SSH) connection to the virtualized host or the management console where commands
are executed and the output is processed. Typically, the output is either XML, which is stored
in the discovery XML file directly, or the output has to be parsed and transformed into XML.
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As alternative to the secure console, a probe can connect to a hypervisor-specific API, such as
a web service, that provides information about the infrastructure configuration.

We illustrate the discovery procedure with VMware as example. Here, the discovery probe
connects to vCenter to extract all configuration information of the managed resources. It does
so by querying the VMware API with the retrieveAllTheManagedObjectReferences() call,
which provides a complete iteration of all instances of ExtensibleManagedObject, a base
class from which other managed objects are derived. We ensure completeness by fully serializ-
ing the entire object iteration into the discovery XML file, including all attributes.

8.6.2 Processing

The processing program consists of the transformation of the discovery XML into the realiza-
tion model, the graph coloring, and the analysis of the colored realization graph.

The realization model is a class model that is used for generating Java class files. Dur-
ing the transformation of the XML into the realization model, instances of these classes are
created, their attributes set, and linked to instances of other classes according to the mapping
rules (cf. Section 8.4.2). Again, we illustrate this process for VMware. Each mapping rule
embodies knowledge of VMware’s ontology of virtualized resources to configuration names,
for instance, that VMware calls storage configuration entries storageDevice. The edges are
encoded implicitly by XML hierarchy (for instance, that a VM is part of a physical host) as well
as explicitly by Managed Object References (MOR). The mapping rules establish edges in the
realization model for all hierarchy links and for all MOR links between configuration entries
for realization model types.

The traversal rules used for the graph coloring (cf. Section 8.4.3 and Section 8.4.4) are
specified in XML. Intermediate results, such as the paths of the graph coloring, can be captured
and used for further processing, i.e., visualization. We implemented Python scripts that generate
input graphs for the Gephi visualization framework 5, such as illustrated in Figure 8.1.

8.6.3 OpenStack Integration

The integration of our automated information flow analysis approach with the TClouds’ desig-
nated cloud computing platform OpenStack requires the following two extensions.

• OpenStack has to provide an interface for accessing the configuration of the virtualized
systems in the cloud.

• The analysis framework needs to be extended to translate OpenStack specific information
into the common realization model.

Discovery. We introduce a new API command discover in the OpenStack management com-
ponent. This command is used by SAVE to obtain the configuration information of all virtual-
ized systems in the cloud. The extended management component contacts all compute nodes
and uses the dump functionality of libvirt on each node to gather the configuration data. This
includes information about the running virtual machines, attach block devices or iSCSI storage
volumes.

5http://gephi.org/
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Processing. In order to apply the information flow analysis, the OpenStack specific configu-
ration data has to be translated into the common realization model. The translation module for
OpenStack iterates over all the compute node hosts and uses the existing translator for libvirt.
For iSCSI storage volumes, we obtain the storage provider from the volume’s name, in order to
establish the relationship between storage and compute nodes.

8.7 Case Study

We launched a case study with a global financial institution for a performance evaluation and
for further validation of detection rates and behavior in large-scale heterogeneous environments.
The analyzed virtualized infrastructure is based on VMware and consists of roughly 1,300 VMs,
the corresponding realization model graph of 25,000 nodes and 30,000 edges. The production
system has strong requirements on isolation between clusters of different security levels, such as
high-security clusters, normal operational clusters, backup clusters and test clusters. In addition,
we can work with a comprehensive inventory of virtualized resources that serves as specification
of an ideal state (machine placement, zone designation and VLAN configuration) and as basis
for alarm validation.

We examine preliminary lessons learned, where we first consider the operation of the tool
itself. The phases discovery, transformation to realization model and graph coloring executed
successfully. The visualization of all results presented a challenge as a 25,000-node/30,000-
edge graph overburdened the built-in visualization of the tool.

From a performance perspective, the discovery of the infrastructure using the VMware probe
in combination with vCenter requires about seven minutes, and results in a discovery XML file
with a size of 61MB. The discovery was performed in a production environment, where network
congestion and other tools using the same vCenter can have a negative effect on the discovery
performance. The overall analysis of the infrastructure using the discovery XML file requires
53 seconds, where 46 seconds are spent on the graph coloring. This demonstrates a reasonable
performance for the discovery and analysis of a mid-sized infrastructure, such as the one in our
case study.

From a security perspective, the tool indeed found several realistic isolation breaches, which
we highlighted by adding virtual edges between breached clusters. All isolation breaches consti-
tuted potential information flows. By that we could show actual breaches between high-security,
normal operational and test clusters. We have furthermore shown that the documentation of the
permitted flows was incomplete: One breach that the system identified violated the initial policy
given by the customer and was fixed by augmenting the policy.

Root-cause analysis answers the question which edges and nodes are ultimately responsible
for the breach. We found that color spill after a traversal to a new cluster may hamper the subse-
quent root-cause analysis. We therefore introduced multiple automated refinement mechanisms
after the graph-coloring phase to support the elimination of classes of potential root causes.
First, we benefited greatly from a process of elimination, that is, to exclude, for instance, that
information has flown over storage edges. Second, it was helpful to allow partial coloring, in
particular to stop color propagation after detecting a breach to another cluster. Third, we intro-
duced a reverse flow tree that captured which path information flow took as prelude to a breach.
Figure 8.4 depicts an example of such a color tree: the tree is a subgraph highlighting a cross-
cluster information flow path. Fourth, we further refined this tree by extracting critical edges,
such as passed VLANs, to pinpoint routes of information flow.

In conclusion, we added a refinement phase driven by reusable Python scripts. We obtained
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Figure 8.4: Root-cause analysis of a source cluster with information flow to a sink cluster. The
tree refinement derives only the sub-graphs relevant for an isolation breach. The “flower” is a
large-scale switch.

multiple realistic alarms and could trace their root causes. The graph export to Gephi enabled
the efficient visualization of root causes and information flows for human validation.

8.8 Conclusion
We demonstrated an analysis system that discovers the configuration of complex heterogeneous
virtualized infrastructures and performs a static information flow analysis. Our approach is
based on a unified graph model that represents the configuration of the virtualized infrastructure
and a graph coloring algorithm that uses a set of traversal rules to specify trust assumptions
and information flow properties in virtualized systems. Based on the colored graph model,
the system is able to diagnose isolation breaches, which would violate the customer isolation
requirements in multi-tenant datacenters. We showed in our security analysis that we can reduce
the correctness and detection rate to the correctness and coverage of the graph traversal rules.
Based on existing research and systems knowledge, we submit that the present traversal rules
are natural and correct.
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