
D2.2.4
Adaptive Cloud-of-Clouds Architecture,

Services and Protocols
Project number: 257243

Project acronym: TClouds

Project title:
Trustworthy Clouds - Privacy and Re-
silience for Internet-scale Critical Infras-
tructure

Start date of the project: 1st October, 2010

Duration: 36 months

Programme: FP7 IP

Deliverable type: Report

Deliverable reference number: ICT-257243 / D2.2.4 / 1.0
Activity and Work package contributing
to deliverable: Activity 2 / WP 2.2

Due date: September 2013 – M36

Actual submission date: 30th September, 2013

Responsible organisation: FFCUL

Editor: Alysson Bessani

Dissemination level: Public

Revision: 1.0 (r7553)

Abstract:

This document describes a number of com-
ponents and algorithms developed dur-
ing the last year of the TClouds project,
extending, complementing or supersed-
ing component descriptions in D2.2.1 and
D2.2.2.

Keywords:

Resilience, adaptation, cloud-of-clouds,
object storage, replication, Byzantine
fault tolerance, state machine replication,
database, file systems

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Editor

Alysson Bessani (FFCUL)

Contributors

Alysson Bessani, Miguel Correia, Vinı́cius Cogo, Nuno Neves, Marcelo Pasin, Hans P. Reiser,

Marcel Santos, João Sousa and Paulo Verı́ssimo (FFCUL)

Leucio Antonio Cutillo (POL)

Disclaimer
This work was partially supported by the European Commission through the FP7-ICT program
under project TClouds, number 257243.

The information in this document is provided as is, and no warranty is given or implied that the
information is fit for any particular purpose.

The user thereof uses the information at its sole risk and liability. The opinions expressed in this
deliverable are those of the authors. They do not necessarily represent the views of all TClouds
partners.

TClouds D2.2.4 I

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Executive Summary

In this deliverable we describe our 3rd-year efforts in further developing replication tools for
implementing dependable cloud-of-clouds services, with particular emphasis on techniques
for replicated execution and its use for building dependable cloud services for the TClouds
plataform. Most of the contributions here presented revolves around the BFT-SMART replica-
tion library, which implements the concept of Byzantine fault-tolerant state machine replication.
Using this library, we show efficient techniques for implementing dependable durable services
(i.e., services that use durable storage like magnetic disks or SSDs), adaptive services (services
able to scale up and scale out) and also a transactional database based on an SQL DBMS. This
report also describes C2FS, a cloud-of-clouds file system that makes use of the resilient object
storage technology (extensively described in TClouds D2.2.2) and BFT-SMART for storing
files in a secure and controlled way in a set of cloud storage services. The deliverable finishes
with a brief discussion of a privacy-by-design P2P design that shows some promising ideas for
future generations of cloud-of-clouds systems.

TClouds D2.2.4 II

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Contents

1 Introduction 1
1.1 TClouds — Trustworthy Clouds . 1
1.2 Activity 2 — Trustworthy Internet-scale Computing Platform 1
1.3 Workpackage 2.2 — Cloud of Clouds Middleware for Adaptive Resilience . . . 2
1.4 Deliverable 2.2.4 — Adaptive Cloud-of-Clouds Architecture, Services and Pro-

tocols . 2

2 State Machine Replication (BFT-SMaRt) Revisited 6
2.1 Introduction . 6
2.2 BFT-SMART Design . 7

2.2.1 Design Principles . 7
2.2.2 System Model . 8
2.2.3 Core Protocols . 8

2.3 Implementation Choices . 10
2.3.1 Building blocks . 11
2.3.2 Staged Message Processing . 12

2.4 Alternative Configurations . 14
2.4.1 Simplifications for Crash Fault Tolerance 14
2.4.2 Tolerating Malicious Faults (Intrusions) 14

2.5 Evaluation . 15
2.5.1 Experimental Setup . 15
2.5.2 Micro-benchmarks . 15
2.5.3 BFTMapList . 19

2.6 Lessons Learned . 20
2.6.1 Making Java a BFT programming language 20
2.6.2 How to test BFT systems? . 21
2.6.3 Dealing with heavy loads . 21
2.6.4 Signatures vs. MAC vectors . 22

2.7 Conclusions . 22

3 Improving the Efficiency of Durable State Machine Replication 23
3.1 Introduction . 23
3.2 Durable SMR Performance Limitations . 24

3.2.1 System Model and Properties . 24
3.2.2 Identifying Performance Problems . 26

3.3 Efficient Durability for SMR . 29
3.3.1 Parallel Logging . 29
3.3.2 Sequential Checkpointing . 29
3.3.3 Collaborative State Transfer . 30

3.4 Implementation: Dura-SMaRt . 34
3.5 Evaluation . 35

TClouds D2.2.4 III

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

3.6 Related Work . 39
3.7 Conclusion . 40

4 Evaluating BFT-SMART over a WAN 41
4.1 Introduction . 41
4.2 Related Work . 42
4.3 Hypotheses . 43
4.4 Methodology . 44
4.5 Leader Location . 44
4.6 Quorum Size . 46
4.7 Communication Steps . 47
4.8 BFT-SMART Stability . 48
4.9 Discussion & Future Work . 49
4.10 Conclusion . 50

5 FITCH: Supporting Adaptive Replicated Services in the Cloud 51
5.1 Introduction . 51
5.2 Adapting Cloud Services . 52
5.3 The FITCH Architecture . 53

5.3.1 System and Threat Models . 53
5.3.2 Service Model . 53
5.3.3 Architecture . 54
5.3.4 Service Adaptation . 55

5.4 Implementation . 56
5.5 Experimental Evaluation . 57

5.5.1 Experimental Environment and Tools 57
5.5.2 Proactive Recovery . 58
5.5.3 Scale-out and Scale-in . 59
5.5.4 Scale-up and Scale-down . 60

5.6 Related Work . 61
5.7 Conclusions . 62

6 A Byzantine Fault-Tolerant Transactional Database 63
6.1 Introduction . 63
6.2 Byzantium . 64
6.3 SteelDB . 65

6.3.1 Fifo Order . 67
6.3.2 JDBC specification . 67
6.3.3 State transfer . 67
6.3.4 Master change . 68
6.3.5 Optimizations . 69

6.4 Evaluation . 69
6.4.1 TPC-C . 69
6.4.2 Test environment . 70
6.4.3 Test results . 71

6.5 Lessons learned . 72
6.5.1 Use case complexity . 72
6.5.2 DBMS maturity . 72

TClouds D2.2.4 IV

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

6.5.3 Database specific issues . 73
6.6 Final remarks . 73

7 The C2FS Cloud-of-Clouds File System 74
7.1 Introduction . 74
7.2 Context, Goals and Assumptions . 76

7.2.1 Cloud-backed File Systems . 76
7.2.2 Goals . 76
7.2.3 System and Threat Model . 77

7.3 Strengthening Cloud Consistency . 77
7.4 C2FS Design . 78

7.4.1 Design Principles . 79
7.4.2 Architecture Overview . 79
7.4.3 C2FS Agent . 81
7.4.4 Security Model . 84
7.4.5 Private Name Spaces . 84

7.5 C2FS Implementation . 85
7.6 Evaluation . 86

7.6.1 Setup & Methodology . 86
7.6.2 Micro-benchmarks . 87
7.6.3 Application-based Benchmarks . 89
7.6.4 Varying C2FS Parameters . 91
7.6.5 Financial Evaluation . 92

7.7 Related Work . 94
7.8 Conclusions . 95

8 Towards Privacy-by-Design Peer-to-Peer Cloud Computing 96
8.1 Introduction . 96
8.2 Security objectives . 97
8.3 A new approach . 98

8.3.1 System Overview . 98
8.3.2 Orchestration . 100

8.4 Operations . 100
8.4.1 Account creation . 101

8.5 Preliminary Evaluation . 102
8.6 Related Work . 103
8.7 Conclusion and Future Work . 104

TClouds D2.2.4 V

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

List of Figures

1.1 Graphical structure of WP2.2 and relations to other workpackages. 5

2.1 The modularity of BFT-SMART. 8
2.2 BFT-SMART Message pattern during normal phase. 9
2.3 The staged message processing on BFT-SMART. 13
2.4 Latency vs. throughput configured for f = 1. 16
2.5 Peak throughput of BFT-SMART for CFT (2f +1 replicas) and BFT (3f +1 replicas)

considering different workloads and number of tolerated faults. 17
2.6 Throughput of a saturated system as the ratio of reads to writes increases for

n = 4 (BFT) and n = 3 (CFT). 18
2.7 Throughput of BFT-SMART using 1024-bit RSA signatures for 0/0 payload and n = 4

considering different number of hardware threads. 18
2.8 Throughput evolution across time and events, for f = 1. 19

3.1 A durable state machine replication architecture. 25
3.2 Throughput of a SCKV-Store with checkpoints in memory, disk and SSD considering

a state of 1GB. 27
3.3 Throughput of a SCKV-Store when a failed replica recovers and asks for a state transfer. 28
3.4 Checkpointing strategies (4 replicas). 30
3.5 Data transfer in different state transfer strategies. 31
3.6 The CST recovery protocol called by the leecher after a restart. Fetch commands wait

for replies within a timeout and go back to step 2 if they do not complete. 32
3.7 General and optimized CST with f = 1. 34
3.8 The Dura-SMaRt architecture. 35
3.9 Latency-throughput curves for several variants of the SCKV-Store and DDS consider-

ing 100%-write workloads of 4kB and 1kB, respectively. Disk and SSD logging are
always done synchronously. The legend in (a) is valid also for (b). 37

3.10 SCKV-Store throughput with sequential checkpoints with different write-only loads
and state size. 38

3.11 Effect of a replica recovery on SCKV-Store throughput using CST with f = 1 and
different state sizes. 39

4.1 CDF of latencies with aggregates in different locations and leader in Gliwice. 46
4.2 Cumulative distribution of latencies observed in Braga (group A). 47
4.3 Message patterns evaluated. 48
4.4 Cumulative distribution of latencies observed in Madrid (group B). 49
4.5 Cumulative distribution of latencies of group A over the course of two weeks. . 50

5.1 The FITCH architecture. 54
5.2 Impact on a CFT stateless service. Note that the y-axis is in logarithmic scale. . 58
5.3 Impact on a BFT stateful key-value store. Note that the y-axis is in logarithmic

scale. 59

TClouds D2.2.4 VI

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

5.4 Horizontal scalability test. 60
5.5 Vertical scalability test. Note that y-axis is in logarithmic scale. 61

6.1 The Byzantium architecture. 64
6.2 The SteelDB architecture. 66
6.3 Work-flow inside a replica. 66
6.4 TPC-C database schema. 70
6.5 TPC-C results standalone DBMS and SteelDB variants. 71

7.1 Cloud-backed file systems and their limitations. 76
7.2 Algorithm for increasing the consistency of the storage service (SS) using a consistency

anchor (CA). 78
7.3 C2FS architecture with its three main components. 80
7.4 Common file system operations in C2FS. The following conventions are used: 1) at

each call forking (the dots between arrows), the numbers indicate the order of execu-
tion of the operations; 2) operations between brackets are optional; 3) each file system
operation (e.g., open/close) has a different line pattern. 82

7.5 Cloud storage latency (milliseconds, log scale) for reading and writing different data
sizes using DepSky and S3. 87

7.6 File system operations invoked in the personal storage service benchmark, simulating
an OpenOffice text document open, save and close actions (f is the odt file and lf is a
lock file). 89

7.7 Execution time of Filebench application benchmarks for: (a) LocalFS, S3QL, NS-C2FS
and NB-C2FS (Local); and (b) NB-C2FS in different storage setups. 91

7.8 Effect of metadata cache expiration time (ms) and PNSs with different file sharing
percentages in two metadata intensive micro-benchmarks. 92

7.9 The operating and usage costs of C2FS. The costs include outbound traffic generated
by the coordination service protocol for metadata tuples of 1KB. 93

8.1 Main components of the system: Distributed Hash Table, Web of Trust, and
Trusted Identification Service network. 99

8.2 The Web of Trust Component: in white, Trusted Cloud Service Providers (trusted
contacts) for V; in light gray, Untrusted Cloud Service Providers for V . Node
B is offline, part of the services B provides to V are still accessible from B’s
Auxiliary Access Points D and E . Random walks in light gray forward V’s re-
quest for B’s services to B’s direct contacts A and C without revealing the real
requester V’s identity. 99

8.3 Availability of Cloud services provided by user U to V: in white, available ser-
vices running at U’s nodes; in black, unavailable ones; in gray, services running
at Z nodes available for U which U respectively provides, as a proxy, to V . . . 102

TClouds D2.2.4 VII

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

List of Tables

2.1 Throughput for different requests/replies sizes for f = 1. Results are given in
operations per second. 16

2.2 Throughput of different replication systems for the 0/0 workload and the number of clients
required to reach these values. 19

3.1 Effect of logging on the SCKV-Store. Single-client minimum latency and peak through-
put of 4kB-writes. 26

4.1 Hosts used in experiments . 45
4.2 Average latency and standard deviation observed in Group B’s distinguished

clients, with the leader in Gliwice. All values are given in milliseconds. 45
4.3 Average latency and standard deviation observed in Group A. All values are

given in milliseconds. 46
4.4 Average latency and standard deviation observed in Group B. All values are

given in milliseconds. 48
4.5 Average latency, standard deviation, Median, 90th and 95th percentile observed

in Group A. Values are given in milliseconds. 49

5.1 Hardware environment. 58

7.1 C2FS durability levels and the corresponding data location, write latency, fault toler-
ance and example system calls. 81

7.2 Latency (ms) of some metadata service operations (no cache) for different setups of
DepSpace with (tuples of 1KB). 87

7.3 Latency (in seconds) of several Filebench micro-benchmarks for three variants of C2FS,
S3QL, S3FS and LocalFS. 88

7.4 Latency and standard deviation (ms) of a personal storage service actions in a file of
1.2MB. The (L) variants maintain lock files in the local file system. C2FS and NB-
C2FS uses a CoC coordination service. 89

7.5 Sharing file latency (ms) for C2FS (in the CoC) and Dropbox for different file sizes. . . 90

TClouds D2.2.4 VIII

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Chapter 1

Introduction

1.1 TClouds — Trustworthy Clouds

TClouds aims to develop trustworthy Internet-scale cloud services, providing computing, net-
work, and storage resources over the Internet. Existing cloud computing services are today
generally not trusted for running critical infrastructure, which may range from business-critical
tasks of large companies to mission-critical tasks for the society as a whole. The latter includes
water, electricity, fuel, and food supply chains. TClouds focuses on power grids and electricity
management and on patient-centric health-care systems as its main applications.

The TClouds project identifies and addresses legal implications and business opportunities
of using infrastructure clouds, assesses security, privacy, and resilience aspects of cloud comput-
ing and contributes to building a regulatory framework enabling resilient and privacy-enhanced
cloud infrastructure.

The main body of work in TClouds defines a reference architecture and prototype systems
for securing infrastructure clouds, by providing security enhancements that can be deployed on
top of commodity infrastructure clouds (as a cloud-of-clouds) and by assessing the resilience,
privacy, and security extensions of existing clouds.

Furthermore, TClouds provides resilient middleware for adaptive security using a cloud-
of-clouds, which is not dependent on any single cloud provider. This feature of the TClouds
platform will provide tolerance and adaptability to mitigate security incidents and unstable op-
erating conditions for a range of applications running on a clouds-of-clouds.

1.2 Activity 2 — Trustworthy Internet-scale Computing Plat-
form

Activity 2 carries out research and builds the actual TClouds platform, which delivers trust-
worthy resilient cloud-computing services. The TClouds platform contains trustworthy cloud
components that operate inside the infrastructure of a cloud provider; this goal is specifically ad-
dressed by WP2.1. The purpose of the components developed for the infrastructure is to achieve
higher security and better resilience than current cloud computing services may provide.

The TClouds platform also links cloud services from multiple providers together, specif-
ically in WP2.2, in order to realize a comprehensive service that is more resilient and gains
higher security than what can ever be achieved by consuming the service of an individual cloud
provider alone. The approach involves simultaneous access to resources of multiple commodity
clouds, introduction of resilient cloud service mediators that act as added-value cloud providers,
and client-side strategies to construct a resilient service from such a cloud-of-clouds.

WP2.3 introduces the definition of languages and models for the formalization of user- and

TClouds D2.2.4 Page 1 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

application-level security requirements, involving the development of management operations
for security-critical components, such as “trust anchors” based on trusted computing technology
(e.g., TPM hardware), and it exploits automated analysis of deployed cloud infrastructures with
respect to high-level security requirements.

Furthermore, Activity 2 will provide an integrated prototype implementation of the trust-
worthy cloud architecture that forms the basis for the application scenarios of Activity 3. For-
mulation and development of an integrated platform is the subject of WP2.4.

These generic objectives of A2 can be broken down to technical requirements and designs
for trustworthy cloud-computing components (e.g., virtual machines, storage components, net-
work services) and to novel security and resilience mechanisms and protocols, which realize
trustworthy and privacy-aware cloud-of-clouds services. They are described in the deliverables
of WP2.1–WP2.3, and WP2.4 describes the implementation of an integrated platform.

1.3 Workpackage 2.2 — Cloud of Clouds Middleware for
Adaptive Resilience

The overall objective of WP2.2 is to investigate and define a resilient (i.e., secure and depend-
able) middleware that provides an adaptable suite of protocols appropriate for a range of ap-
plications running on clouds-of-clouds. The key idea of this work package is to exploit the
availability of several cloud offers from different providers for similar services to build re-
silient applications that make use of such cloud-of-clouds, avoiding the dependency of a single
provider and ruling out the existence of Internet-scale single point of failures for cloud-based
applications and services.

During the first year, a set of components and algorithms were identified, together with
a reference architecture, and described in D2.2.1. The second year we focused on the fun-
damental protocols required for supporting cloud-of-clouds replication, namely asynchronous
state machine replication and resilient object storage. These results, together with some other
contributions, were presented in D2.2.2.

1.4 Deliverable 2.2.4 — Adaptive Cloud-of-Clouds Architec-
ture, Services and Protocols

Overview. The increasing maturity of cloud computing technology is leading many organi-
zations to migrate their IT solutions and/or infrastructures to operate completely or partially in
the (public) cloud. Even governments and companies that maintain critical infrastructures are
considering the use of public cloud offers to reduce their operational costs [Gre10]. Neverthe-
less, the use of public clouds (e.g., Amazon Web Services, Windows Azure, Rackspace) has
limitations related to security and privacy, which should be accounted for, especially for the
critical applications we are considering in TClouds.

These limitations are mostly related with the fact that currently cloud-based applications
heavily depend on the trustworthiness of the cloud provider hosting the services. This trust may
be unjustified due to a set of threats affecting cloud providers since their inception:

• Loss of availability: When data is moved from the company’s network to an external
datacenter, it is inevitable that service availability is affected by problems in the Internet.
Unavailability can also be caused by cloud outages, from which there are many reports

TClouds D2.2.4 Page 2 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

[Rap11], or by DDoS (Distributed Denial of Service) attacks [Met09]. Unavailability
may be a severe problem for critical applications such as smart lighting.

• Loss and corruption of data: There are several cases of cloud services losing or cor-
rupting customer data. Two elucidative examples are: in October 2009 a subsidiary of
Microsoft, Danger Inc., lost the contacts, notes, photos, etc. of a large number of users of
the Sidekick service [Sar09]; in February of the same year Ma.gnolia lost half a terabyte
of data that it never managed to recover [Nao09]. According to OSF’ dataloss database1,
incidents involving data loss by third parties (including cloud providers) are still a serious
threat.

• Loss of privacy: The cloud provider has access to both the stored data and how it is
accessed. Usually it is reasonable to assume the provider as a company is trustworthy,
but malicious insiders are a wide-spread security problem [HDS+11]. This is an especial
concern in applications that involve keeping private data like health records.

• Vendor lock-in: There is currently some concern that a few cloud computing providers
may become dominant, the so called vendor lock-in issue [ALPW10]. This concern is
specially prevalent in Europe, as the most conspicuous providers are not in the region.
Even moving from one provider to another one may be expensive because the cost of
cloud usage has a component proportional to the amount of data that is transferred.

One of the main objectives of WP2.2 is to develop techniques, proof-of-concept middleware
and services that exploit the use of multiple cloud providers (the so called cloud-of-clouds) to
mitigate these threats.

In this deliverable we present contributions related with the design and use of a replication
library implementing the State Machine Replication component of TClouds. Contrary to the
Resilient Object Storage (see D2.2.2), which assumes the replicas are simple storage services
with read/write capabilities, the State Machine Replication component can be used to implement
replicated execution of deterministic services [Sch90], being thus much more general and hard
to implement.

In accordance with WP2.2 requirements (using public clouds to support dependable ser-
vices), the replication library described in this deliverable (called BFT-SMART) does not re-
quire any special feature from replica’ nodes or the communication network, being thus ad-
equate to be used in any IaaS service providing VM instances (e.g., Amazon EC2), on the
opposite of MinBFT [VCB+13], EBAWA [VCBL10] or CheapBFT [KBC+12] (the resource-
efficient State Machine Replication of WP2.1) which require trusted components on the nodes.

Besides the design of the replication library, we also present extensive experimental work
showing how this service supports durable services (i.e., services that make use of persistent
storage like magnetic disks and SSDs), filling a gap in the distributed systems literature. In
the same way, we deploy and analyze the performance of BFT-SMART in several wide-area
deployments around Europe, simulating a cloud-of-clouds environment, to assess (1) if BFT-
SMART (and state machine replication in general) is stable (i.e., its latency is predictable) and
performant enough to be used in practice, and (2) if the optimization techniques proposed in
several well-known papers do improve the performance BFT-SMART in wide-area setups. Fi-
nally, we also present a framework for dependable adaptation of replicated services that supports
vertical and horizontal scalability, including experiments showing with BFT-SMART.

1See http://datalossdb.org/statistics?utf8=?&timeframe=all_time.

TClouds D2.2.4 Page 3 of 118

http://datalossdb.org/statistics?utf8=?&timeframe=all_time

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

This deliverable also describe two storage systems developed using TClouds components.
The first is SteelDB, a database replication middleware built over BFT-SMART that tolerates
Byzantine faults and supports ACID transactions. The second is C2FS, a cloud-of-clouds file
system that uses the Resilient Object Storage described in D2.2.2 (in particular, the DepSky
system [BCQ+11]) to replicate files in set of cloud storage providers and BFT-SMART for
implementing a cloud-of-clouds service for storing file metadata and coordinating accesses to
shared files.

It is worth to mention that SteelDB and C2FS should not be considered core sub-systems
of TClouds - in the same way as Resilient Object Storage (DepSky) and State Machine Repli-
cation (BFT-SMART) are - but experimental services developed using the TClouds enabling
middleware for easy integration with the project application scenarios. SteelDB is used in the
demonstration of the Smart Lighting scenario (WP3.2) while C2FS is used in the Healthcare
scenario (WP3.1).

Since TClouds is a research project, we also present a novel proposal for a privacy-by-design
cloud-of-clouds architecture. In such architecture, cloud services are provided by a number of
cooperating independent parties consisting in the user nodes themselves. Unlike the current
cloud services, the proposed solution provides user anonymity and untraceability, and allows
users to select service providers on the basis of the expected privacy protection. In a scenario
where each user runs the TClouds platform on his own infrastructure, such architecture sheds
new lights on privacy preserving trustworthy cloud computing.

Structure. This deliverable is organized in the following way. Chapter 2 offers a extended de-
scription of BFT-SMART, the WP2.2 implementation of the State Machine Replication com-
ponent for deployment in IaaS. This chapter supersedes and updates Chapter 8 of TClouds
D2.2.1. The next chapter (3) discusses the problems of supporting durable services using State
Machine Replication and present solutions for these problems. The material on this chapter
was published in [BSF+13]. Chapter 4 shows some evaluation of the BFT-SMaRt replication
library when the replicas are deployed around Europe, in a wide-area network. The material
on this chapter will be presented on the 1st Workshop on Planetary-Scale Distributed Systems,
in September 30th, 2013 (it is a no proceedings workshop). All the software related with these
three chapters was delivered in D2.2.3 and is also released in as open source under the Apache
License [BSA].

Chapter 5 presents the FITCH framework for supporting adaptive replicated services, in-
cluding the BFT-SMART replication library. The material on this chapter was published in
[CNS+13]. The next two chapters describe two storage systems developed using BFT-SMART.
Chapter 6 describes Byzantine fault-tolerant transactional SQL database while Chapter 7 presents
C2FS, the TClouds’ Cloud-of-clouds file system. These five chapters provide extensive prac-
tical insights (including a lot of experimental work) on how to build and deploy SMR-based
services in the real world.

Finally, Chapter 8 proposes a new Cloud-of-Clouds architecture which addresses the pro-
tection of the user’s privacy from the outset and has been published in [CL13].

Deviation from Workplan. This deliverable conforms to the DoW/Annex I, Version 2.

Target Audience. This deliverable aims at researchers and developers of security and man-
agement systems for cloud-computing platforms. The deliverable assumes graduate-level back-
ground knowledge in computer science technology, specifically, in operating system concepts

TClouds D2.2.4 Page 4 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

WP2.2
Cloud of Clouds
Middleware for Adaptive
Resilience

WP2.1 Trustworthy
Cloud Infrastructure

WP2.3 Cross-layer
Security and Privacy

Management

WP1.1 Requirements and
Roadmap

WP1.2 Legal
Implications of Cross-

Border Cloud
Implementations

WP2.4 Architecture
and Integrated

Platform

TASK 2.2.2: Middleware
services and protocols

TASK 2.2.3: Adaptation
mechanisms

TASK 2.2.1:
Requirements and

Architecture for Privacy-
enhanced Cloud-of-
clouds Middleware

TASK 2.2.4: Proof-of-
concept prototypes

WP3.2 Cloud-
middleware and

Applications for the
Smart Grid

Benchmark Scenario

WP3.1 Cloud
Applications and Data
Structures for Home

Healthcare Benchmark
Scenario

D2.2.3

D2.2.3

D2.2.3

D1.1.1
D1.1.4

D1.2.2
D1.2.3

D2.1.2
D2.1.3

D2.3.1

Figure 1.1: Graphical structure of WP2.2 and relations to other workpackages.

and distributed systems models and technologies.

Relation to Other Deliverables. Figure 1.1 illustrates WP2.2 and its relations to other work-
packages according to the DoW/Annex I (specifically, this figure reflects the structure after the
change of WP2.2 made for Annex I, Version 2).

The present deliverable, D2.2.4, presents a set of contributions related with the use of Byzan-
tine fault-tolerant replication to implement trustworthy services and applications. This deliver-
able extends and uses the contributions described in two previous WP2.2 deliverables (D2.2.1
and D2.2.2) and defines a subset of services that were demonstrated in TClouds 2nd-year and
3rd-year demos. Naturally, most of the ideas presented here will be used in the components
used in both use cases of A3.

TClouds D2.2.4 Page 5 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Chapter 2

State Machine Replication (BFT-SMaRt) Re-
visited

Chapter Authors:
Alysson Bessani and João Sousa (FFCUL).
This chapter updates Chapter 8 of TClouds D2.2.1.

2.1 Introduction

The last decade and half saw an impressive amount of papers on Byzantine Fault-Tolerant (BFT)
State Machine Replication (SMR) (e.g., [CL02, CWA+09, VCBL09, CKL+09], to cite just a
few), but almost no practical use of these techniques in real deployments.

Our view of this situation is that the fact that there are no robust-enough implementations
of BFT SMR available, only prototypes used as proof-of-concept for the papers, makes it quite
difficult to use this kind of technique. The general perception is that implementing BFT pro-
tocols is far from trivial and that commission faults are rare and can be normally dealt with
simpler techniques like checksums,

To the best of our knowledge, from all “BFT systems” that appeared on the last decade, only
the early PBFT [CL02] and the very recent UpRight [CKL+09] implement an almost complete
replication system (which deal with the normal synchronous fault-free case and the corner cases
that happen when there are faults and asynchrony). However, our experience with PBFT shows
that it is not robust enough (e.g., we could not make it survive a primary failure) and it is not
being maintained anymore, and UpRight uses a 3-tier architecture which tends to be more than a
simple BFT replication library, besides having too low performance (at least the implementation
currently available) from what is currently accepted as the state-of-the-art.

In this chapter we describe our effort in implementing and maintaining BFT-SMART [BSA],
a Java-based BFT SMR library which implements a protocol similar to the one used in PBFT but
targets not only high-performance in fault-free executions, but also correctness in all possible
malicious behaviors of faulty replicas.

The main contribution of this chapter is to fill a gap in the BFT literature by document-
ing the implementation of this kind of protocol, including associate protocols like state trans-
fer [BSF+13] and reconfiguration. In particular, BFT-SMART is the first BFT SMR system to
fully support reconfiguration of the replica set.

The chapter is organized as follows: §2.2 describes the design of BFT-SMART. The li-
brary’s architecture is presented in §2.3. §2.5 discusses the results we obtained from our micro-
benchmarks and experiments. §2.6 highlight some lessons learned during these 6 years of de-
velopment and maintenance of our system. §2.7 presents our concluding remarks.

TClouds D2.2.4 Page 6 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

2.2 BFT-SMART Design

The development of BFT-SMART started at the beginning of 2007 aiming to build a BFT total
order multicast library for the replication layer of the DepSpace coordination service [BACF08].
In 2009 we revamped the design of this multicast library to make it a complete BFT replication
library, including features such as checkpoints and state transfer. Nonetheless, it was only
during the TClouds project (2010-2013) that we could improve the system to go much further
than any other open-source state machine replication (BFT or not) we are aware of in terms of
quality and functionality.

2.2.1 Design Principles
BFT-SMART was developed with the following design principles in mind:

• Tunable fault model. By default, BFT-SMART tolerates non-malicious Byzantine faults,
which is a realistic system model in which replicas can crash, delay messages or corrupt
its state, just like what is observed in many real systems and components. We think this is
the most appropriate system model for a pragmatical system that aims to serve as a basis
for implementing critical services. Besides that, BFT-SMART also support the use of
cryptographic signatures for improved tolerance to malicious Byzantine faults, or the use
of a simplified protocol, similar to Paxos [Lam98], to tolerate only crashes and message
corruptions1.

• Simplicity. The emphasis on protocol correctness made us avoid the use of optimiza-
tions that could bring extra complexity both in terms of deployment and coding or add
corner cases to the system. For this reason, we avoid techniques that, although promising
in terms of performance (e.g., speculation [KAD+07b] and pipelining [GKQV10]) or re-
source efficiency (e.g., trusted components [VCB+13] or IP multicast [CL02,KAD+07b]),
would make or code more complex to make correct (due to new corner cases) or deploy
(due to lack of infrastructure support). This emphasis also made us chose Java instead of
C/C++ as the implementation language. Somewhat surprisingly, even with these design
choices, the performance of our system is still better than some of these optimized SMR
implementations.

• Modularity. BFT-SMART implements the Mod-SMaRt protocol [SB12] (also described
in Chapter 6 of TClouds D2.2.2), a modular SMR protocol that uses a well defined con-
sensus module in its core. On the other hand, system like PBFT implements a monolithic
protocol where the consensus algorithm is embedded inside of the SMR, without a clear
separation. While both protocols are equivalent at run-time, modular alternatives tend to
be easier to implement and reason about, when compared to monolithic protocols. Be-
sides the existence of modules for reliable communication, client requests ordering and
consensus, BFT-SMART also implements state transfer and reconfiguration modules,
which are completely separated from the agreement protocol, as show in Figure 2.1.

• Simple and Extensible API. Our library encapsulates all the complexity of SMR inside
a simple and extensible API that can be used by programmers to implement deterministic

1During this chapter we only consider the BFT setup of the system, we will discuss the crash fault tolerance
simplifications later in §2.4.

TClouds D2.2.4 Page 7 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

VP-Consensus

Reliable and Authenticated
Channels

Mod-SMaRt
State

Transfer
Reconfig

Extensible State Machine Replication

Figure 2.1: The modularity of BFT-SMART.

services. More precisely, if the service strictly follows the SMR programming model,
clients can use a simple invoke(command) method to send commands to the replicas, that
implement an execute(command) method to process the command, after it is totally or-
dered by the framework. If the application requires advanced features not supported by
such basic programming model, these features can be implemented with a set or alter-
native calls (e.g., invokeUnordered), callbacks or plug-ins both at client and server-side
(e.g., custom voting by the client, reply management and state management, among oth-
ers).

• Multi-core awareness. BFT-SMART takes advantage of ubiquitous multicore architec-
ture of servers to improve some costly processing tasks on the critical path of the protocol.
In particular, we make our system throughput scale with the number of hardware threads
supported by the replicas, specially when signatures are enabled.

2.2.2 System Model

BFT-SMART assumes a set of n replicas and an unknown number of clients. Up to f < n/3
replicas and an unbounded number of clients can fail arbitrarily. Moreover, we assume faulty
replicas can crash and later recover and that replicas can be added or removed from the system.

BFT-SMART requires an eventually synchronous system model like other protocols for
SMR for ensuring liveness [CL02, Lam98]. Moreover, we assume reliable authenticated point-
to-point links between processes. These links are implemented using message authentication
codes (MACs) over TCP/IP. The system currently support two implementations for this: either
the keys are defined statically, one for each pair of processes, in configuration files on the clients
and replicas, or a public-key infrastructure is used to support for the Signed Diffie-Hellman for
generating these keys when connections are established.

2.2.3 Core Protocols

BFT-SMART uses a number of protocols for implementing state machine replication. In this
section we give a brief overview of these protocols.

TClouds D2.2.4 Page 8 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Atomic Broadcast

Atomic broadcast is achieved using the Mod-SMaRt protocol [SB12] together with the Byzan-
tine consensus algorithm described in [Cac09]. Clients send their requests to all replicas, and
wait for their replies. In the absence of faults and presence of synchrony, BFT-SMART exe-
cutes in normal phane, whose message pattern is illustrated in Figure 2.2. This is comprised by
a sequence of consensus executions. Each consensus execution i begins with one of the replicas
designated as the leader (initially the replica with the lowest id) proposing some value for the
consensus through a STATE message. All replicas that receive this message verify if its sender
is the current leader, and if the value proposed is valid, they weakly accept the value being
proposed, sending an WRITE message to all other replicas. If some replica receives more than
n+f
2

WRITE messages for the same value, it strongly accepts this value and sends a ACCEPT
message to all other replicas. If some replica receives more than n+f

2
ACCEPT messages for

the same value, this value is used as the decision for consensus. Such decision is logged (either
in memory or disk), and the requests it contains are executed.

ACCEPT

P0

P1

P2

P3

Client

STATE WRITE

Byzantine
Paxos

Consensus

Figure 2.2: BFT-SMART Message pattern during normal phase.

The normal phase of the protocol is executed in the absence of faults and in the presence
of synchrony. When these conditions are not satisfied, the synchronization phase might be
triggered. During this phase, Mod-SMaRt must ensure three things: (1) a quorum of n − f
replicas must have the pending messages that caused the timeouts; (2) correct replicas must
exchange logs to converge to the same consensus instance; and (3) a timeout is triggered in this
consensus, proposing the same leader at all correct replicas (see [SB12] for details).

State Transfer

In order to implement a practical state machine replication, the replicas should be able to be
repaired and reintegrated in the system, without restarting the whole replicated service. Mod-
SMaRt by itself can guarantee total ordering of operations across correct replicas, but it does
not account for replicas that are faulty but eventually recover.

In order for replicas to be able to transfer the application’s state to another replica, it first
needs to fetch this state from the service. But fetching it each time an operation is executed
degrades performance, especially if the state is large. One could make use of periodic snapshots,
called checkpoints, and logs of operations to avoid fetching the state all the time. But on the
other hand, applications that use BFT-SMART might already have this functionality (such as

TClouds D2.2.4 Page 9 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

the case of database management systems - see Chapter 6). Because of this, BFT-SMART

delegates to the application the task of managing checkpoints, thus enabling state management
to be as flexible as possible (even non-existent, if the application does not need it).

The default state transfer protocol can be triggered either when (1) a replica crashes but
later is restarted, (2) a replica detects that it is slower that the others, (3) a synchronization
phase is triggered but the log is truncated beyond the point at which the replica could apply
the operations, and (4) the replica is added to the system while already executing system (see
next section). When any of these scenarios are detected, the replica sends a STATE REQUEST
message to all the other replicas asking for the application’s state. Upon receiving this request,
they reply with a STATE REPLY message containing the version of the state that was requested
by the replica. Instead of having one replica sending the complete state (checkpoint and log) and
others sending cryptographic hashes for validating this state, like is done in PBFT and all other
systems we are aware of, we use a partitioning scheme in which one replica send a checkpoint
and the others send parts of the logs (see [BSF+13] for details).

Reconfiguration

All previous BFT SMR systems assume a static system that cannot grow or shrink over time.
BFT-SMART, on the other hand, provides and additional protocol that enables the system’s
view to be modified during execution time, i.e., replicas can be added or removed from the
system without needing to halt it. In order to accomplish this, BFT-SMART uses a special type
of client named View Manager, which is a trust party. The View Manager is expected to be
trustworthy, and managed only by system administrators. It can also remain off-line for most
of the time, being required only for adding or removing replicas.

The reconfiguration protocol works as follows: the View Manager issues a special type of
operation which is submitted to the Mod-SMaRt algorithm as any other operation, in a similar
way as described in [Lam98, LMZ10a]. Through these operations, the View Manager notifies
the system about the IP address, port and id of the replica it wants to add to (or remove from)
the system. Because these operations are also totally ordered, all correct replicas will adopt the
same system’s view.

Once the View Manager operation is ordered, it is not delivered to the application. Instead,
the information regarding the replicas present in the system is updated, and the parameter f is
set in function of the updated list of replicas that comprise the system. Moreover, the replicas
start trying to establish a secure channel with this new replica. Following this, the replicas reply
to the View Manager informing it if the view change succeeded. If so, the View Manager sends
a special message to the replica that is waiting to be added to (or removed from) the system,
informing it that it can either start executing or halt its execution. After this point, if a replica is
being added, it triggers the state transfer protocol to bring itself up to date.

2.3 Implementation Choices

The codebase of BFT-SMART contains less than 13.5K lines of commented Java code dis-
tributed in little more than 90 classes and interfaces. This is much less than what was used in
similar systems: PBFT contains 20K lines of C code and UpRight contains 22K lines of Java
code.

TClouds D2.2.4 Page 10 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

2.3.1 Building blocks
To achieve modularity, we defined a set of building blocks (or modules) that should contain the
core of the functionalities required by BFT-SMART. These blocks are divided in three groups:
communication system, state machine replication and state management. The first encapsulates
everything related to client-to-replica and replica-to-replica communication, including authenti-
cation, replay attacks detection, and reestablishment of communication channels after a network
failure while the second implements the core algorithms for establishing total order of requests.
The third implements the state management, which is described in [BSF+13], and thus omitted
here.

Communication system

The communication system provides a queue abstraction for receiving both requests from clients
and messages from other replicas, as well as a simple send method that allows a replica to send
a byte array to some other replica or client identified by an integer. The main three modules are:

• Client Communication System. This module deals with the clients that connect, send
requests and receive responses from replicas. Given the open-nature of this communi-
cation (since replicas can serve an unbounded number of clients) we choose the Netty
communication framework [JBo10] for implementing client/server communication. The
most important requirement of this module is that it should be able to accept and deal
with few thousands of connections efficiently. To do this, the Netty framework uses the
java.nio.Selector class and a configurable thread pool.

• Client Manager. After receiving a request from a client, this request should be verified
and stored to be used by the replication protocol. For each connected client, this module
stores the sequence number of the last request received from this client (to detect replay
attacks) and maintains a queue containing the requests received but not yet delivered to
the service being replicated (that we call service replica). The requests to be ordered in a
consensus are taken from these queues in a fair way.

• Server Communication System. While the replicas should accept connections from
an unlimited number of clients, as is supported by the client communication system de-
scribed above, the server communication system implements a closed-group communi-
cation model used by the replicas to send messages between themselves. The implemen-
tation of this layer was made through “usual” Java sockets, using one thread to send and
one thread to receive for each server. One of the key responsibilities of this module is to
reestablish the channels between every two replicas after a failure and a recovery.

State machine replication

Using the simple interface provided by the communication system to access reliable and au-
thenticated point-to-point links, we have implemented the state machine replication protocol.
BFT-SMART uses six main modules to achieve state machine replication.

• Proposer: this reasonable simple module (which contains a single class) implements the
role of a proposer, i.e., how it can propose a value to be accepted and what a replica
should do when it is elected as a new leader. This thread also triggers the broadcast of the
STATE message to the other replicas within the system.

TClouds D2.2.4 Page 11 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

• Acceptor: this module implements the core of the consensus algorithm: messages of
type ACCEPT and WRITE are processed and generated here. For instance, when more
than n+f

2
ACCEPT messages for the same (proposed) value are received, a corresponding

WRITE message is generated.

• Total Order Multicast (TOM): this module gets pending messages received by the client
communication system and calls the proposer module to start a consensus instance. Addi-
tionally, a class of this module is responsible for delivering requests to the service replica
and to create and destroy timers for the pending messages of each client.

• Execution Manager: this module is closely related to the TOM and is used to manage
the execution of consensus instances. It stores information about consensus instances
and their rounds as well as who was the leader replica on these rounds. Moreover, the
execution manager is responsible to stop and re-start a consensus being executed.

• Leader Change Manager: Most of the complex code to deal with leader changes is in
this module.

• Reconfiguration Manager: The reconfiguration protocol is implemented by this module.

2.3.2 Staged Message Processing

A key point when implementing a high-throughput replication middleware is how to break the
several tasks of the protocol in a suitable architecture that can be robust and efficient. In the
case of BFT SMR there are two additional requirements: the system should deal with hundreds
of clients and resist malicious behaviors from both replicas and clients.

Figure 2.3 presents the main architecture with the threads used for staged message process-
ing [WCB01] of the protocol implementation. In this architecture, all threads communicate
through bounded queues and the figure shows which thread feeds and consumes data from
which queues.

The client requests are received through a thread pool provided by the Netty communication
framework. We have implemented a request processor that is instantiated by the framework and
executed by different threads as the client load demands. The policy for thread allocation is at
most one per client (to ensure FIFO communication between clients and replicas), and we can
define the maximum number of threads allowed.

Once a client message is received and its MAC verified, we trigger the client manager that
verifies the request signature and (if validated) adds it to the client’s pending requests queue.
Notice that since client’ MACs and signatures (optionally supported) are verified by the Netty
threads, multi-core and multi-processor machines would naturally exploit their power to achieve
high throughput (verifying several client signatures in parallel).

The proposer thread will wait for three conditions before starting a new instance of the
consensus: (i) it is the leader of the next consensus; (ii) the previous instance is already finished;
and (iii) at least one client (pending requests) queue has messages to be ordered. In a leader
replica, the first condition will always be true, and it will propose a batch of new requests to
be ordered as soon as a previous consensus is decided and there are pending messages from
clients. Notice the size will contain all pending requests (up to a certain maximum size, defined
in the configuration file), so there is no waiting to fill a batch of certain size before proposing.
In non-leader replicas, this thread is always sleeping waiting for condition (i).

TClouds D2.2.4 Page 12 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Message

Processor

Thread

Netty

Thread Pool

...

client 1 queue

client 2 queue

...
Client Manager

Service

Replica

decided

queue

in

queue

requests

replies

...

out

queue 1

...

Netty

Thread 1

Netty

Thread 2

Proposer

Thread

Receiver

Thread 1

Request

Timer

Thread

Sender

Thread n

Sender

Thread 1

Receiver

Thread n

Delivery

Thread

out

queue n

State Timer

Thread

Figure 2.3: The staged message processing on BFT-SMART.

Every message m to be sent by one replica to another is put on the out queue from which
a sender thread will get m, serialize it, produce a MAC to be attached to the message and
send it through TCP sockets. At the receiver replica, a receiver thread for this sender will read
m, authenticate it (i.e., validate its MAC), deserialize it and put it on the in queue, where all
messages received from other replicas are stored in order to be processed.

The message processor thread is responsible to process almost all messages of the state
machine replication protocol. This thread gets one message to be processed and verifies if
this message consensus is being executed or, in case there is no consensus currently being
executed, it belongs to the next one to be started. Otherwise, either the message consensus was
already finished and the message is discarded, or its consensus is yet to be executed (e.g., the
replica is executing a late consensus) and the message is stored on the out-of-context queue
to be processed when this future consensus is able to execute. As a side note, it is worth to
mention that although the STATE message contains the whole batch of messages to be ordered,
the ACCEPT and WRITE messages only contain the cryptographic hash of this batch.

When a consensus is finished on a replica (i.e., the replica received more than n+f
2

WRITEs
for some value), the value of the decision is put on the decided queue. The delivery thread is
responsible for getting decided values (a batch of requests proposed by the leader) from this
queue, deserialize all messages from the batch, remove them from the corresponding client
pending requests queues and mark this consensus as finalized. After that, a state management
thread stores the batch of requests in the log. In parallel with that, the delivery thread invokes the
service replica to make it execute the request and generate a reply. When the batch is properly
logged and the response is generated by the replica, the reply is sent to the invoking clients.

The request timer task is periodically activated to verify if some request remained more
than a pre-defined timeout on the pending requests queue. The first time this timer expires for
some request, causes this request to be forwarded to the current known leader. The second time
this timer expires for some request, the instance currently running of the consensus protocol is
stopped.

TClouds D2.2.4 Page 13 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

The state timer thread is responsible for managing the timeout associated with the state
transfer protocol. This timeout is necessary because the state transfer protocol requires the
cooperation of all active; if one of such replica is faulty, it might not send the state, thus freezing
the current state transfer. If this timeout expires, the state transfer protocol is re-initialized, and
a different replicas is chosen to send the entire state.

Although we do not claim that the architecture depicted in Figure 2.3 is the best architecture
for implementing state machine replication, it is the result of several experiences to make the
most simple and performant SMR implementation in Java.

2.4 Alternative Configurations
As already mentioned in previous sections, by default BFT-SMART tolerates non-malicious
Byzantine faults, in the same way as most work on BFT replication (e.g., [CL02, KAD+07b]).
However, the system can be tuned or deployed in environments to tolerate only crashes or
(intelligent) malicious behavior.

2.4.1 Simplifications for Crash Fault Tolerance
BFT-SMART supports a configuration parameter that, if activated, makes the system strictly
crash fault-tolerant. When this feature is active, the system tolerates f < n/2 (i.e., it requires
only a majority of correct replicas), which requires modification in all required quorums of the
protocols, and bypasses one all-to-all communication step during the consensus execution (the
ACCEPT round of the consensus is not required). Other than that, the protocol is the same as
in the BFT case, with MACs still enabled for message verification, bringing also tolerance to
message corruption.

2.4.2 Tolerating Malicious Faults (Intrusions)
Making a BFT replication library tolerate intrusions requires one to deal with several concerns
that are not usually addressed by most BFT protocols [Bes11]. In this section we discuss how
BFT-SMART deal with some of these concerns.

Previous works showed that the use of public key signatures on client requests makes it
impossible for clients to forge MAC vectors and force leader changes (making the protocol
much more resilient against malicious faults) [ACKL08, CWA+09]. By default, BFT-SMART

does not use public-key signatures other than for establishing shared symmetric keys between
replicas, however the system optionally support the use of signatures for avoiding this problem.

The same works also showed that a malicious leader can launch undetectable performance
degradation attacks, making the throughput of the system as small as 10% of what would be
achieved in fault-free executions. Currently, BFT-SMART does not provide defenses against
such attacks, however, the system can be easily extended to support periodic leader changes
to limit such attacks damage [CWA+09]. In fact, the codebase of a very early version of
BFT-SMART were already used to implement a protocol resilient against to this kind of at-
tack [VCBL09].

Finally, the fact we developed BFT-SMART in Java make it easy to deploy it in different
platforms2 for avoiding single mode failures, being caused by accidental events (e.g., a bug

2Although we did not support N-versions of the system codebase, we believe supporting the deployment in
several platforms is a good compromise solution.

TClouds D2.2.4 Page 14 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

or infrastructure bug) and malicious attacks (e.g., caused by a common vulnerabilities). Such
platforms comprise the deployment of replicas in different operating systems [GBG+13] or even
cloud providers [Vuk10]. In the latter case, our protocol need to be prepared for dealing with
wide-area replication. The behavior of the BFT-SMART in WANs is studied in Chapter 4 and
some experiments with a real deployment in a cloud-of-clouds is described in §7.6.2.

2.5 Evaluation

In this section we present results from BFT-SMART’s performance evaluation. These experi-
ments consist of (1) some micro-benchmarks designed to evaluate the library’s throughput and
client latency and (2) an experiment designed to depict the performance’s evolution of a small
application implemented with BFT-SMART once the system is forced to withstand events like
replicas faults, state transfers, and system reconfigurations.

2.5.1 Experimental Setup

All experiments ran with three to five replicas hosted in separated machines. The client pro-
cesses were distributed uniformly across another four machines. Each client machine ran up
to eight Java processes, which in turn executed up to fifty threads which implemented BFT-
SMART clients (for a total of up to 1600 client processes).

Clients and replicas executed in the Java Runtime environment 1.7.0 21 on Ubuntu 10.04,
hosted in Dell PowerEdge R410 servers. Each machine has two quad-core 2.27 GHz Intel
Xeon E5520 processor with hyperthreading and 32 GB of memory. All machines communicate
through a gigabit Ethernet switch isolated from the rest of the network.

2.5.2 Micro-benchmarks

PBFT-like Benchmarks. We start by reporting the results we gathered from a set of micro-
benchmarks that are commonly used to evaluate state machine replication systems, and focus on
replica throughput and client latency. They consist of a simple client/service implemented over
BFT-SMART that performs throughput calculations at server side and latency measurements at
client side. Throughout results were obtained from the leader replica, and latency results from
a selected client.

Figure 2.4 illustrates BFT-SMART performance in terms of client latency against replica
throughput for both BFT and CFT protocols. For each protocol we executed four experiments
for different request/reply sizes: 0/0, 100/100, 1024/1024 and 4096/4096 bytes. Figure 2.4
shows that for each payload size, the CFT protocol consistently outperforms its BFT counter-
part. Furthermore, as the payload size increases, BFT-SMART overall performance decreases.
This is because (1) the overhead of requests/replies transmission between clients and replicas
increases with the messages size, and (2) since Mod-SMaRt orders requests in batches, the
larger is the payload, the bigger (in bytes) the batch becomes, thus increasing its transmission
overhead amongst replicas.

We complement the previous results with Table 2.1, which shows how different payload’s
combinations affect throughput. This experiment was conducted under a saturated system run-
ning 1600 clients using only the BFT protocol. Our results indicate that increasing request’s
payload generates greater throughput degradation than reply’s payload does. This can also be

TClouds D2.2.4 Page 15 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100

La
te

n
cy

 (
m

ili
se

co
n
d

s)

Throughput (Kops/sec)

Byz-0B

Crash-0B

Byz-100B

Crash-100B

Byz-1kB

Crash-1kB

Byz-4kB

Crash-4kB

Figure 2.4: Latency vs. throughput configured for f = 1.
XXXXXXXXXXXRequests

Replies
0 bytes 100 bytes 1024 bytes

0 bytes 83337 75138 37320
100 bytes 78711 72879 36948
1024 bytes 16309 16284 15878

Table 2.1: Throughput for different requests/replies sizes for f = 1. Results are given in
operations per second.

explained by the larger batch submitted to the consensus protocol, since request’s payload in-
fluences its size, whereas reply’s payload does not.

Fault-scalability. Our next experiment consider the impact of the size of the replica group on
the peak throughput of the system for the system under different benchmarks. The results are
reported in Figure 2.5.

The results show that, for all benchmarks, the performance of BFT-SMART degrades gra-
ciously as f increases, both for CFT and BFT setups. In principle, these results contradict
the observation that protocols containing all-to-all communication patters are less scalable as
the number of faults tolerated [AEMGG+05a]. However, this is not the case in BFT-SMART

because (i) it exploit the cores of the replicas (which our machines have plenty) to calculate
MACs, (i) only the n− 1 propose message of the agreement protocol is significantly bigger, the
other (n−1)2 are much smaller and contain only a hash of the proposal, and (i) we avoid the use
of multicast IP, which is know to cause problems with many senders (e.g., multicast storms).

Finally, it is also interesting to see that, with relatively big requests (1024 bytes), the differ-
ence between BFT and CFT tend to be very small, independently on the number of tolerated
faults. Moreover, the performance drop between tolerating 1 to 3 faults is also much smaller
with big payloads (both requests and replies).

Mixed workloads. Our next experiment considers a mix of requests representing reads and
writes. In the context of this experiment, the difference between reads and writes is that the
former issues small requests (almost-zero size) but gets replies with payload, whereas the latter
issues requests with payload but gets replies with almost zero size. This experiment was also

TClouds D2.2.4 Page 16 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

 0

 20

 40

 60

 80

 100

f = 1 f = 2 f = 3

T
h
ro

u
g

h
p

u
t

(K
o
p

s/
se

c)

Number of faults

Byzantine
Crash

(a) 0/0

 0

 20

 40

 60

 80

 100

f = 1 f = 2 f = 3

T
h
ro

u
g

h
p

u
t

(K
o
p

s/
se

c)

Number of faults

Byzantine
Crash

(b) 0/1024

 0

 20

 40

 60

 80

 100

f = 1 f = 2 f = 3

T
h
ro

u
g

h
p

u
t

(K
o
p

s/
se

c)

Number of faults

Byzantine
Crash

(c) 1024/0

 0

 20

 40

 60

 80

 100

f = 1 f = 2 f = 3

T
h
ro

u
g

h
p

u
t

(K
o
p

s/
se

c)

Number of faults

Byzantine
Crash

(d) 1024/1024
Figure 2.5: Peak throughput of BFT-SMART for CFT (2f + 1 replicas) and BFT (3f + 1 replicas)
considering different workloads and number of tolerated faults.

conducted under a saturated system running 1600 clients.
We performed the experiment both for the BFT and CFT setups of BFT-SMART, using

requests/replies with payloads of 100 and 1024 bytes. Similarly to the previous experiments, the
CFT protocol outperforms its BFT counterpart regardless of the ratio of read to write requests
by around 5 to 15%. However, the observed behavior of the system regarding the throughput
differs between the case of 100 bytes and 1024 payloads, whereas the former clearly benefits
from a larger read/write ratio.

This happens because 1024 bytes requests (a write operation) generate batches much larger
than requests with only 100 bytes of payload. This in turn spawns a much greater communi-
cation overhead in the consensus protocol. Therefore, as we increase the read to write ratio
for payloads of 1024 bytes, the consensus overhead decreases, which in turn improves per-
formance. This happens with up to 75% reads, which has a better throughput than 95%- or
100%-read workloads. This happens for payloads of 1024 bytes because at this point sending
the large replies of the read become the contention point of our system. Notice this behavior is
much less significant with small payloads.

Signatures and Multi-core Awareness. Our next experiment considers the performance of
the system when signatures are enabled, and used for ensuring resilience to malicious clients [CWA+09].
In this setup a client sign every request to the replicas that first verify its authentic before order-
ing it. There are two fundamental service-throughput overheads involved in using 1024-bit RSA
signatures. First, the messages are 112 bytes bigger than when SHA-1 MACs are used. Second,
the replicas need to verify the signatures, which is relatively costly computational operation.

Figure 2.7 shows the throughput of BFT-SMART with different number of threads being

TClouds D2.2.4 Page 17 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

T
h
ro

u
g

h
p

u
t

(K
o
p

s/
se

c)

Percentage of read-only requests

Byz-1kB

Crash-1kB

Byz-100B

Crash-100B

Figure 2.6: Throughput of a saturated system as the ratio of reads to writes increases for n = 4
(BFT) and n = 3 (CFT).

used for verifying signatures. As the results show, the architecture of BFT-SMART exploit the
existence of multiple cores (or multiple hardware threads) to scale the throughput of the system.
This happens because the signatures are verified by the Netty thread pool, which uses a number
of threads proportional to the number of hardware threads in the machine (see Figure 2.3).

… And State Machine Replication
for All with BFT-SMaRt

Alysson Bessani*, João Sousa*, Eduardo Alchieri**
*University of Lisbon, Portugal **Univeristy of Brasilia, Brazil

BFT-SMaRt Novel Features

(BFT) State Machine Replication for Real

BFT-SMaRt
 5-year effort started from FCUL
 Currently funded by FCT and EU (TClouds & MASSIF IPs)
 Objective: provide a “reasonable stable” and complete
state machine replication library to be used in research
and proof-of-concept prototypes

Why?
 Many BFT papers and prototypes
 What about systems? What if you want to use (crash or Byzantine) FT replication?
 Most “prototypes” only implement best case behavior…
 Possible alternatives: PBFT [1] is too old, UpRight [2] is too complex

References
1- C. Castro, B. Liskov. Practical Byzantine Fault Tolerance and Proactive Recovery. ACM TOCS, 2002.
2- A. Clement et al. UpRight Cluster Services. SOSP’09. 2009.
3- C. Cachin, Yet Another Visit to Paxos. IBM Zurich TR. 2009.
4- J. Sousa, A. Bessani. From Byzantine Consensus to BFT State Machine Replication: A Latency-optimal Transformation. EDCC’12. 2012.

http://code.google.com/p/bft-smart

Features X Complexity

SMR Complexity
(LoCs & Module
dependencies)

(relative) Simplicity

Modularity

Reconfiguration

State Management

Extensible API

Multi-core Awareness High Performance

Number of cores used to verify signatures

Th
ro

ug
hp

ut
 (m

es
sa

ge
s/

se
c)

Number of clients

Th
ro

ug
hp

ut
 (m

es
sa

ge
s/

se
c)

 First BFT SMR system that
support replica group
reconfigurations
 Only a trusted manager
can add or remove replicas*

 Employs an optimal
transformation from
Byzantine consensus [3] to
total order multicast [4]

Modular SMR

 Supports a programming
model more expressive than
client.invoke/server.execute
 A set of plug-ins allows
the implementation of non-
standard behavior

 Completely orthogonal
to the ordering protocol
 State management
(logging & checkpoint) is
done by the application
 Used for leader change
and bring late, restarted or
new replicas up to date

- Java instead of C++
- Avoid overcomplicated optimizations
- Number of lines of code: 8399

(PBFT: ~20K LoCC; UpRight: ~22K LoJC [2])

- Number of classes/interfaces: 90
{

Replica Architecture

BFT-SMaRt is supported by FCT through ReD (PTDC/EIA-EIA/109044/2008) and CloudFIT (PTDC/EIA-CCO/108299/2008) projects, and by EC through TClouds (FP7-257243) and MASSIF (FP7-257475) projects.

Figure 2.7: Throughput of BFT-SMART using 1024-bit RSA signatures for 0/0 payload and n = 4
considering different number of hardware threads.

BFT-SMaRt vs. Others. As mentioned before, BFT-SMART was built for correctness, mod-
ularity and completeness, avoiding many of the optimizations that make SMR systems so com-
plex to implement. Nonetheless, the overall performance of the system is better than competing
(less robust) prototypes found on the Internet. Table 2.2 compares the peak sustained through-
put of BFT-SMART, PBFT [CL02] and libPaxos (a crash fault-tolerant replication library [Pri])
in our environment. Notice that both PBFT and libPaxos were implemented in C.

TClouds D2.2.4 Page 18 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

System Throu. (Kops/sec) Clients

BFT-SMART 83 1000
BFT-SMART (crash) 91 800
PBFT 49 60
libPaxos 63 50

Table 2.2: Throughput of different replication systems for the 0/0 workload and the number of clients required
to reach these values.

2.5.3 BFTMapList
In this section we discuss the implementation and evaluation of BFTMapList, a replicated in-
memory data structure commonly used in social network applications. This experiment was
designed to evaluate the behavior of an application implemented using BFT-SMART, and how
it fares against replica’s failures, recoveries, and reconfigurations.

Design and implementation. BFTMapList is an implementation of the Map interface from
the Java API which uses BFT-SMART to replicate its data in set of replicas. It can be initialized
at client side providing transparency of this underlying replication mechanism. This is done by
invoking BFT-SMART within its implementation. In BFTMapList, keys correspond to string
objects and values correspond to a list of strings. We implemented the put, remove, size and
containsKey methods of the aforementioned Java interface. These methods insert/delete a new
String/List pair, retrieve the amount of values stored, and check if a given key was already
inserted in the data structure. We also implemented an additional method called putEntry so
that we could directly add new elements to the lists given their associated key.

To evaluate the implementation of this data structure, we created client threads that con-
stantly insert new strings of 100 bytes to these lists, but periodically purge them to prevent the
lists from growing too large and exhaust memory. Each client thread corresponds to one BFT-
SMART client. Besides storing data, the server side implementation also performs throughput
calculations.

Results. We sought to observe how BFTMapList performance would evolve upon several
events within the system - ranging from replicas faults, leader changes, state transfers and sys-
tem reconfigurations. For this experiment, BFT-SMART were configured to tolerate Byzantine
faults. Our results are depicted in Figure 2.8. We launched 30 clients issuing the put, remove,
size and putEntry methods described previously over the course of 10 minutes. We started the
experiment with an initial set of replicas with IDs ranging from 0 to 3. The throughput depicted
in the figure is collected from replica 1.

 0

 5

 10

 15

 20

 25

 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600

 120 240 260 370 510

T
h
ro

u
g
h
p
u
t

(K
o
p
s/

se
c)

Time (seconds)

Replica 4 joins the system

Replica 0 halts its execution

Replica 1 becomes the new leader

Replica 0 recovers and resumes execution

Replica 3 exits the system

Figure 2.8: Throughput evolution across time and events, for f = 1.

As the clients started their execution, the service’s throughput increased until all clients
were operational around second 10. At second 120 we inserted replica 4 into the service. As

TClouds D2.2.4 Page 19 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

we did this, we observed a decreased in throughput. This can be explained by the fact that more
replicas demand larger quorums in the consensus protocol and more messages to be processed
in each replica. This reconfiguration spawns more message exchanges among replicas, which
add congestion to the network and results in inferior performance.

At second 240, we crashed replica 0 (the current consensus’ leader). As expected, the
throughput dropped to zero during the 20 seconds (timeout value) that took the remaining repli-
cas to trigger their timeouts and run Mod-SMaRt’s synchronization phase. After this phase was
finished, the system resumed execution. Since at this point there are less replicas executing,
there are also less messages being exchanged in the system and the throughput was similar the
initial configuration.

At second 370, we restarted replica 0, which resumes normal operation after triggering the
state transfer. Upon its recovery, the system goes back to the throughput exhibited before replica
0 had crashed.

At second 510, we removed replica 3 from the group, thus setting the quorum size to its
original value, albeit with a different set of replicas. Since there is one less replica to handle
messages from, we are able to observe the system’s original throughput again by the end of the
experiment.

2.6 Lessons Learned

Five years of development and three generations of BFT-SMART gave us important insights
about how to implement and maintain high-performance fault-tolerant protocols in Java. In this
section we discuss some of the lessons learned on this effort.

2.6.1 Making Java a BFT programming language

Despite the fact that the Java technology is used in most application servers and backend ser-
vices deployed in enterprises, it is a common belief that a high-throughput implementation of a
state machine replication protocol could not be possible in Java. We consider that the use of a
type-safe language with several nice features (large utility API, no direct memory access, secu-
rity manager, etc.) that makes the implementation of secure software more feasible is one of the
key aspects to be observed when designing a replication library. For this reason, and because
of its portability, we choose Java to implement BFT-SMART. However, our experience shows
that these nice features of the language when not used carefully can cripple the performance of
a protocol implementation. As an example, we will discuss how object serialization can be a
problem.

One of the key optimizations that made our implementation efficient was to avoid Java
default serialization in the critical path of the protocol. This was done in two ways: (1.) we
defined the client-issued commands as byte arrays instead of generic objects, this removed the
serialization and deserialization of this field of the client request from all message transmissions;
and (2.) we avoid using object serialization on client requests, implementing serialization by
hand (using data streams instead of object streams). This removed the serialization header from
the messages and was specially important for client requests that are put in large quantities on
batches to be decided by a consensus3.

3A serialized 0-byte operation request requires 134 bytes with Java default serialization and 22 bytes in our
custom serialization.

TClouds D2.2.4 Page 20 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

2.6.2 How to test BFT systems?
Although distributed systems tracing and debugging is a lively research area (e.g., [SBG10,
BKSS11]), there are still no tools mature enough to be used. Our approach for testing BFT-
SMART is based on the use of JUnit, a popular unity testing tool. In our case we use it in the
final automatic test of our build script to run test scripts that (1.) setup replicas, (2.) run some
client accessing the replicated service under test and verify if the results are correct, and (3.) kill
the replicas in the end. Notice this is a completely black-box testing, the only way to observe
the system behavior is through the client. Similar approaches are being used in other distributed
computing open-source projects like Apache Zookeeper (which also uses JUnit).

Our JUnit-test framework allow us to easily inject crash-faults on the replicas, however, test-
ing the system against malicious behaviors is much more tricky. The first challenge is to identify
the critical malicious behaviors that should be injected on up to f replicas. The second chal-
lenge is how to inject the code of the malicious behaviors on these replicas. The first challenge
can only be addressed with careful analysis of the protocol being implemented. Disruptive code
can be injected to the code using patches, aspect-oriented programming (through crosscutting
concerns that can be activated on certain replicas) or simple commented code (which we are
currently using). Our pragmatic test approach can be complemented with orthogonal methods
such as the Netflix chaos monkey [BT12] to test the system on site.

It is worth to notice that most faulty behaviors can cause bugs that affect the liveness of
the protocol, since basic invariants implemented in key parts of the code can ensure safety
(e.g., a leader proposing different values to different replicas should cause a leader change, not
a disagreement). This means that a lot of recent work in verification of safety properties in
distributed systems through model checking (e.g., [BKSS11]) does not solve the most difficult
problem in the design of distributed protocols: liveness bugs.

Moreover, the fact that the system tolerates arbitrary faults makes it mask some non-determin-
istic bugs, or Heisenbugs, turning the whole test process even more difficult. For example, an
older version of the BFT-SMART communication system loosed some messages sporadically
when under heavy load. The effect of this was that in certain rare conditions (e.g., when the bug
happens in more than f replicas during the same protocol phase) there was a leader change, and
the system blocks. We call these bugs Byzenbugs, since they are a specific kind of Heisenbugs
that happen in BFT systems and that only manifest themselves if they occur in more than f
replicas at the same time. Consequently, these bugs are orders of magnitude more difficult to
discover (they are masked) and very complex to reproduce (they seldom happen).

2.6.3 Dealing with heavy loads
When testing BFT-SMART under heavy loads, we found several interesting behaviors that
appear when a replication protocol is put under stress. The first one is that there are always f
replicas that stay late in message processing. The reason is that only n− f replicas are needed
for the protocol to make progress and naturally f replicas will stay behind. A possible solution
for this problem is to make the late replicas stay silent (and not load the faster replicas with late
messages that will be discarded) and when they are needed (e.g., when one of the faster replicas
fails) they synchronize themselves with the fast replicas using the state transfer protocol (which
runs more often that expected).

Another interesting point is that, in a switched network under heavy-load in which clients
communicate with replicas using TCP, spontaneous total order (i.e., client requests reaching
all replicas in the same order with high probability) almost never happens. This means that

TClouds D2.2.4 Page 21 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

the synchronized communication pattern described in Figure 2.2 does not happen in practice.
This same behavior is expected to happen in wide-area networks. The main point here is that
developers should not assume that client request queues on different replicas will be similar.

The third behavior that commonly happens in several distributed systems is that their through-
put tends to drop after some time under heavy-load. This behavior is called trashing and can be
avoided through a careful selection of the data structures4 used on the protocol implementation
and bounding the queues used for threads communication.

2.6.4 Signatures vs. MAC vectors
Castro and Liskov most important performance optimization to make BFT practical was the
use of MAC vectors instead of public-key signatures. They solved a technological limitation
of that time. In 2007, when we started developing BFT-SMART we avoided signatures at all
costs due to the fact that the machines we had access at that time created and verified signatures
much slowly than the machines we used in the experiments described in §2.5: a 1024-bit RSA
signature creation went from 15 ms to less than 1.7 ms while its verification went from 1 ms to
less than 0.09 ms (a 10× improvement). This means that with the machines available today, the
problem of avoiding public-key signatures is not so important as it was a decade ago, specially
if signature verification can be parallelized (as in our architecture).

2.7 Conclusions
This chapter reported our effort in building the BFT-SMART state machine replication library.
Our contribution with this work is to fill a gap in SMR/BFT literature describing how this kind
of protocol can be implemented in a safe and performant way. Our experiments show, the
current implementation already provides a very good throughput for both small- and medium-
size messages.

The BFT-SMART system described here is available as open source software in the project
homepage [BSA] and, at the time of this writing, there are several groups around the world
currently using or modifying our system for their research needs. In the next five chapters we
explore other works and services based on BFT-SMART within the context of the TClouds
project.

4For example, data structures that tend to grow with the number of requests being received should process
searches in log n (e.g., using AVL trees) to avoid losing too much performance under heavy-load.

TClouds D2.2.4 Page 22 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Chapter 3

Improving the Efficiency of Durable State
Machine Replication

Chapter Authors:
Alysson Bessani, Marcel Santos, João Felix, Nuno Neves, Miguel Correia (FFCUL)

3.1 Introduction

Internet-scale infrastructures rely on services that are replicated in a group of servers to guar-
antee availability and integrity despite the occurrence of faults. One of the key techniques for
implementing replication is the Paxos protocol [Lam98], or more generically the State Ma-
chine Replication (SMR) approach [Sch90], which is one of the core sub-systems of TClouds
(as described in the previous chapter). Many systems in production use variations of this ap-
proach to tolerate crash faults (e.g., [Bur06, Cal11, CGR07, Cor12, HKJR10]). Research sys-
tems have also shown that SMR can be employed with Byzantine faults with reasonable costs
(e.g., [CL02, CKL+09, GKQV10, KBC+12, KAD+07b, VCBL09, VCB+13]).

This chapter addresses the problem of adding durability to SMR systems in general, and in
BFT-SMART in particular. Durability is defined as the capability of a SMR system to survive
the crash or shutdown of all its replicas, without losing any operation acknowledged to the
clients. Its relevance is justified not only by the need to support maintenance operations, but
also by the many examples of significant failures that occur in data centers, causing thousands
of servers to crash simultaneously [Dea09, FLP+10, Mil08, Ric11].

However, the integration of durability techniques – logging, checkpointing, and state trans-
fer – with the SMR approach can be difficult [CGR07]. First of all, these techniques can dras-
tically decrease the performance of a service1. In particular, synchronous logging can make the
system throughput as low as the number of appends that can be performed on the disk per sec-
ond, typically just a few hundreds [KA08]. Although the use of SSDs can alleviate the problem,
it cannot solve it completely (see §3.2.2). Additionally, checkpointing requires stopping the ser-
vice during this operation [CL02], unless non-trivial optimizations are used at the application
layer, such as copy-on-write [CGR07, CKL+09]. Moreover, recovering faulty replicas involves
running a state transfer protocol, which can impact normal execution as correct replicas need
to transmit their state.

Second, these durability techniques can complicate the programming model. In theory,
SMR requires only that the service exposes an execute() method, called by the replication library
when an operation is ready to be executed. However this leads to logs that grow forever, so in

1The performance results presented in the literature often exclude the impact of durability, as the authors in-
tend to evaluate other aspects of the solutions, such as the behavior of the agreement protocol. Therefore, high
throughput numbers can be observed (in req/sec) since the overheads of logging/checkpointing are not considered.

TClouds D2.2.4 Page 23 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

practice the interface has to support service state checkpointing. Two simple methods can be
added to the interface, one to collect a snapshot of the state and another to install it during
recovery. This basic setup defines a simple interface, which eases the programming of the
service, and allows a complete separation between the replication management logic and the
service implementation. However, this interface can become much more complex, if certain
optimizations are used (see §3.2.2).

This chapter presents new techniques for implementing data durability in crash and Byzan-
tine fault-tolerant (BFT) SMR services. These techniques are transparent with respect to both
the service being replicated and the replication protocol, so they do not impact the programming
model; they greatly improve the performance in comparison to standard techniques; they can be
used in commodity servers with ordinary hardware configurations (no need for extra hardware,
such as disks, special memories or replicas); and, they can be implemented in a modular way,
as a durability layer placed in between the SMR library and the service.

The techniques are three: parallel logging, for diluting the latency of synchronous log-
ging; sequential checkpointing, to avoid stopping the replicated system during checkpoints; and
collaborative state transfer, for reducing the effect of replica recoveries on the system perfor-
mance. This is the first time that the durability of fault-tolerant SMR is tackled in a principled
way with a set of algorithms organized in an abstraction to be used between SMR protocols
and the application.

The proposed techniques were implemented in a durability layer on the BFT-SMART state
machine replication library [BSA], on top of which we built two services: a consistent key-value
store (SCKV-Store) and a non-trivial BFT coordination service (Durable DepSpace). Our ex-
perimental evaluation shows that the proposed techniques can remove most of the performance
degradation due to the addition of durability.

This chapter presents the following contributions:

1. A description of the performance problems affecting durable state machine replication,
often overlooked in previous works (§3.2);

2. Three new algorithmic techniques for removing the negative effects of logging, check-
pointing and faulty replica recovery from SMR, without requiring more resources, spe-
cialized hardware, or changing the service code (§3.3).

3. An analysis showing that exchanging disks by SSDs neither solves the identified problems
nor improves our techniques beyond what is achieved with disks (§3.2 and §3.5);

4. The description of an implementation these techniques in BFT-SMART (§3.4), and an
experimental evaluation under write-intensive loads, highlighting the performance limi-
tations of previous solutions and how our techniques mitigate them (§3.5).

3.2 Durable SMR Performance Limitations
This section presents a durable SMR model, and then analyzes the effect of durability mecha-
nisms on the performance of the system.

3.2.1 System Model and Properties
We follow the standard SMR model [Sch90]. Clients send requests to invoke operations on a
service, which is implemented in a set of replicas (see Figure 3.1). Operations are executed in

TClouds D2.2.4 Page 24 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

the same order by all replicas, by running some form of agreement protocol. Service operations
are assumed to be deterministic, so an operation that updates the state (abstracted as a write) pro-
duces the same new state in all replicas. The state required for processing the operations is kept
in main memory, just like in most practical applications for SMR [Bur06, CGR07, HKJR10].

SMR$Client$Side$ SMR$Server$Side$

Client$App.$

invoke execute getState
setState

Service$

Stable$
Storage$

log+
ckpt

log+
ckpt

Figure 3.1: A durable state machine replication architecture.

The replication library implementing SMR has a client and a server side (layers at the bottom
of the figure), which interact respectively with the client application and the service code. The
library ensures standard safety and liveness properties [CL02, Lam98], such as correct clients
eventually receive a response to their requests if enough synchrony exists in the system.

SMR is built under the assumption that at most f replicas fail out of a total of n replicas
(we assume n = 2f + 1 on a crash fault-tolerant system and n = 3f + 1 on a BFT system).
A crash of more than f replicas breaks this assumption, causing the system to stop processing
requests as the necessary agreement quorums are no longer available. Furthermore, depending
on which replicas were affected and on the number of crashes, some state changes may be
lost. This behavior is undesirable, as clients may have already been informed about the changes
in a response (i.e., the request completed) and there is the expectation that the execution of
operations is persistent.

To address this limitation, the SMR system should also ensure the following property:

Durability: Any request completed at a client is reflected in the service state after
a recovery.

Traditional mechanisms for enforcing durability in SMR-based main memory databases are
logging, checkpointing and state transfer [CGR07,GMS92]. A replica can recover from a crash
by using the information saved in stable storage and the state available in other replicas. It is
important to notice that a recovering replica is considered faulty until it obtains enough data to
reconstruct the state (which typically occurs after state transfer finishes).

Logging writes to stable storage information about the progress of the agreement protocol
(e.g., when certain messages arrive in Paxos-like protocols [CGR07, JRS11]) and about the
operations executed on the service. Therefore, data is logged either by the replication library
or the service itself, and a record describing the operation has to be stored before a reply is
returned to the client.

The replication library and the service code synchronize the creation of checkpoints with
the truncation of logs. The service is responsible for generating snapshots of its state (method
getState) and for setting the state to a snapshot provided by the replication library (method
setState). The replication library also implements a state transfer protocol to initiate replicas
from an updated state (e.g., when recovering from a failure or if they are too late processing
requests), akin to previous SMR works [CL02, CRL03, CGR07, CKL+09, RST11]. The state is
fetched from the other replicas that are currently running.

TClouds D2.2.4 Page 25 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

3.2.2 Identifying Performance Problems
This section discusses performance problems caused by the use of logging, checkpointing and
state transfer in SMR systems. We illustrate the problems with a consistent key-value store
(SCKV-Store) implemented using BFT-SMART [BSA], (described in Chapter 2). In any case,
the results in the chapter are mostly orthogonal to the fault model and also affect systems subject
to only crash faults. We consider write-only workloads of 8-byte keys and 4kB values, in a key
space of 250K keys, which creates a service state size of 1GB in 4 replicas. More details about
this application and the experiments can be found in §3.4 and §3.5, respectively.

High latency of logging. As mentioned in §3.2.1, events related to the agreement protocol
and operations that change the state of the service need to be logged in stable storage. Table 3.1
illustrates the effects of several logging approaches on the SCKV-Store, with a client load that
keeps a high sustainable throughput:

Metric No log Async. Sync. SSD Sync. Disk
Min Lat. (ms) 1.98 2.16 2.89 19.61

Peak Thr. (ops/s) 4772 4312 1017 63

Table 3.1: Effect of logging on the SCKV-Store. Single-client minimum latency and peak throughput
of 4kB-writes.

The table shows that synchronous2 logging to disk can cripple the performance of such sys-
tem. To address this issue, some works have suggested the use of faster non-volatile memory,
such as flash memory solid state drives (SSDs) or/in NVCaches [RST11]. As the table demon-
strates, there is a huge performance improvement when the log is written synchronously to SSD
storage, but still only 23% of the “No log” throughput is achieved. Additionally, by employing
specialized hardware, one arguably increases the costs and the management complexity of the
nodes, especially in virtualized/cloud environments where such hardware may not be available
in all machines.

There are works that avoid this penalty by using asynchronous writes to disk, allowing
replicas to present a performance closer to the main memory system (e.g., Harp [LGG+91]
and BFS [CL02]). The problem with this solution is that writing asynchronously does not give
durability guarantees if all the replicas crash (and later recover), something that production
systems need to address as correlated failures do happen [Dea09, FLP+10, Mil08, Ric11].

We would like to have a general solution that makes the performance of durable systems
similar to pure memory systems, and that achieves this by exploring the logging latency to
process the requests and by optimizing log writes.

Perturbations caused by checkpoints. Checkpoints are necessary to limit the log size, but
their creation usually degrades the performance of the service. Figure 3.2 shows how the
throughput of the SCKV-Store is affected by creating checkpoints at every 200K client requests.
Taking a snapshot after processing a certain number of operations, as proposed in most works in
SMR (e.g., [CL02,Lam98]), can make the system halt for a few seconds. This happens because
requests are no longer processed while replicas save their state. Moreover, if the replicas are
not fully synchronized, delays may also occur because the necessary agreement quorum might
not be available.

2Synchronous writes are optimized to update only the file contents, and not the metadata, using the rwd mode
in the Java’ RandomAccessFile class (equivalent to using the O DSYNC flag in POSIX open). This is important to
avoid unnecessary disk head positioning.

TClouds D2.2.4 Page 26 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300
Th

ro
ug

hp
ut

 (K
op

s/
se

c)

Time (seconds)

Memory
Disk
SSD

Figure 3.2: Throughput of a SCKV-Store with checkpoints in memory, disk and SSD considering a
state of 1GB.

The figure indicates an equivalent performance degradation for checkpoints written in disk
or SSD, meaning there is no extra benefit in using the latter (both require roughly the same
amount of time to synchronously write the checkpoints). More importantly, the problem occurs
even if the checkpoints are kept in memory, since the fundamental limitation is not due to
storage accesses (as in logging), but to the cost to serialize a large state (1 GB).

Often, the performance decrease caused by checkpointing is not observed in the literature,
either because no checkpoints were taken or because the service had a very small state (e.g.,
a counter with 8 bytes) [CL02, CWA+09, GKQV10, KBC+12, KAD+07b, VCBL09, VCB+13].
Most of these works were focusing on ordering requests efficiently, and therefore checkpoint-
ing could be disregarded as an orthogonal issue. Additionally, one could think that checkpoints
need only to be created sporadically, and therefore, their impact is small on the overall exe-
cution. We argue that this is not true in many scenarios. For example, the SCKV-Store can
process around 4700 4kB-writes per second (see §3.5), which means that the log can grow
at the rate of more than 1.1 GB/min, and thus checkpoints need to be taken rather frequently
to avoid outrageous log sizes. Leader-based protocols, such as those based on Paxos, have
to log information about most of the exchanged messages, contributing to the log growth.
Furthermore, recent SMR protocols require frequent checkpoints (every few hundred opera-
tions) to allow the service to recover efficiently from failed speculative request ordering at-
tempts [GKQV10, KBC+12, KAD+07b].

Some systems use copy-on-write techniques for doing checkpointing without stoping repli-
cas (e.g., [CKL+09]), but this approach has two limitations. First, copy-on-write may be com-
plicated to implement at application level in non-trivial services, as the service needs to keep
track of which data objects were modified by the requests. Second, even if such techniques are
employed, the creation of checkpoints still consumes resources and degrades the performance
of the system. For example, writing a checkpoint to disk makes logging much slower since
the disk head has to move between the log and checkpoint files, with the consequent disk seek
times. In practice, this limitation could be addressed in part with extra hardware, such as by
using two disks per server.

Another technique to deal with the problem is fuzzy snapshots, used in ZooKeeper [HKJR10].
A fuzzy snapshot is essentially a checkpoint that is done without stopping the execution of oper-
ations. The downside is that some operations may be executed more than once during recovery,
an issue that ZooKeeper solves by forcing all operations to be idempotent. However, making
operations idempotent requires non-trivial request pre-processing before they are ordered, and
increases the difficulty of decoupling the replication library from the service [HKJR10,JRS11].

We aim to have a checkpointing mechanism that minimizes performance degradation with-
out requiring additional hardware and, at the same time, keeping the SMR programming model

TClouds D2.2.4 Page 27 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300
Th

ro
ug

hp
ut

 (K
op

s/
se

c)

Time (seconds)

transfer

started

transfer

finished

Figure 3.3: Throughput of a SCKV-Store when a failed replica recovers and asks for a state transfer.

simple.

Perturbations caused by state transfer. When a replica recovers, it needs to obtain an up-
dated state to catch up with the other replicas. This state is usually composed of the last check-
point plus the log up to some request defined by the recovering replica. Typically, (at least)
another replica has to spend resources to send (part of) the state. If checkpoints and logs are
stored in a disk, delays occur due to the transmission of the state through the network but
also because of the disk accesses. Delta-checkpoint techniques based, for instance, on Merkle
trees [CL02] can alleviate this problem, but cannot solve it completely since logs have always
to be transferred. Moreover, implementing this kind of technique can add more complexity to
the service code.

Similarly to what is observed with checkpointing, there can be the temptation to disregard
the state transfer impact on performance because it is perceived to occur rarely. However, tech-
niques such as replica rejuvenation [HKKF95] and proactive recovery [CL02, SBC+10] use
state transfer to bring refreshed replicas up to date. Moreover, reconfigurations [LAB+06] and
even leader change protocols (that need to be executed periodically for resilient BFT replica-
tion [CWA+09]) may require replicas to synchronize themselves [CL02, SB12]. In conclusion,
state transfer protocols may be invoked much more often than when there is a crash and a
subsequent recovery.

Figure 3.3 illustrates the effect of state transmission during a replica recovery in a 4 node
BFT system using the PBFT’s state transfer protocol [CL02]. This protocol requires just one
replica to send the state (checkpoint plus log) – similarly to crash FT Paxos-based systems –
while others just provide authenticated hashes for state validation (as the sender of the state
may suffer a Byzantine fault). The figure shows that the system performance drops to less than
1/3 of its normal performance during the 30 seconds required to complete state transfer. While
one replica is recovering, another one is slowed because it is sending the state, and thus the
remaining two are unable to order and execute requests (with f = 1, quorums of 3 replicas are
needed to order requests).

One way to avoid this performance degradation is to ignore the state transfer requests until
the load is low enough to process both the state transfers and normal request ordering [HKJR10].
However, this approach tends to delay the recovery of faulty replicas and makes the system
vulnerable to extended unavailability periods (if more faults occur). Another possible solution
is to add extra replicas to avoid interruptions on the service during recovery [SBC+10]. This
solution is undesirable as it can increase the costs of deploying the system.

We would like to have a state transfer protocol that minimizes the performance degradation
due to state transfer without delaying the recovery of faulty replicas.

TClouds D2.2.4 Page 28 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

3.3 Efficient Durability for SMR
In this section we present three techniques to solve the problems identified in the previous
section.

3.3.1 Parallel Logging
Parallel logging has the objective of hiding the high latency of logging. It is based on two
ideas: (1) log groups of operations instead of single operations; and (2) process the operations
in parallel with their storage.

The first idea explores the fact that disks have a high bandwidth, so the latency for writing
1 or 100 log entries can be similar, but the throughput would be naturally increased by a factor
of roughly 100 in the second case. This technique requires the replication library to deliver
groups of service operations (accumulated during the previous batch execution) to allow the
whole batch to be logged at once, whereas previous solutions normally only provide single
operations, one by one. Notice that this approach is different from the batching commonly
used in SMR [CL02, CWA+09, KAD+07b], where a group of operations is ordered together to
amortize the costs of the agreement protocol (although many times these costs include logging
a batch of requests to stable storage [Lam98]). Here the aim is to pass batches of operations
from the replication library to the service, and a batch may include (batches of) requests ordered
in different agreements.

The second idea requires that the requests of a batch are processed while the corresponding
log entries are being written to the secondary storage. Notice, however, that a reply can only
be sent to the client after the corresponding request is executed and logged, ensuring that the
result seen by the client will persist even if all replicas fail and later recover. Naturally, the
effectiveness of this technique depends on the relation between the time for processing a batch
and the time for logging it. More specifically, the interval Tk taken by a service to process a
batch of k requests is given by Tk = max (Ek, Lk), where Ek and Lk represent the latency
of executing and logging the batch of k operations, respectively. This equation shows that the
most expensive of the two operations (execution or logging) defines the delay for processing
the batch. For example, in the case of the SCKV-Store, Ek � Lk for any k, since inserting data
in a hash table with chaining (anO(1) operation) is much faster than logging a 4kB-write (with
or without batching). This is not the case for Durable DepSpace, which takes a much higher
benefit from this technique (see §3.5).

3.3.2 Sequential Checkpointing
Sequential checkpointing aims at minimizing the performance impact of taking replica’s state
snapshots. The key principle is to exploit the natural redundancy that exists in asynchronous
distributed systems based on SMR. Since these systems make progress as long as a quorum
of n − f replicas is available, there are f spare replicas in fault-free executions. The intuition
here is to make each replica store its state at different times, to ensure that n − f replicas can
continue processing client requests.

We define global checkpointing period P as the maximum number of (write) requests that a
replica will execute before creating a new checkpoint. This parameter defines also the maximum
size of a replica’s log in number of requests. Although P is the same for all replicas, they
checkpoint their state at different points of the execution. Moreover, all correct replicas will
take at least one checkpoint within that period.

TClouds D2.2.4 Page 29 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Replica0 Replica1 Replica2 Replica3

:m
e$

ckp$ ckp$ ckp$ ckp$

ckp$ ckp$ ckp$ ckp$

(a) Synchronized.

Replica0 Replica1 Replica2 Replica3

ckp$

ckp$

ckp$

ckp$

ckp$

ckp$

ckp$

:m
e$

(b) Sequential.

Figure 3.4: Checkpointing strategies (4 replicas).

An instantiation of this model is for each replica i = 0, ..., n − 1 to take a checkpoint after
processing the k-th request where k mod P = i ×

⌊
P
n

⌋
, e.g., for P = 1000, n = 4, replica i

takes a checkpoint after processing requests i× 250, 1000+ i× 250, 2000+ i× 250, and so on.
Figure 3.4 compares a synchronous (or coordinated) checkpoint with our technique. Time

grows from the bottom of the figure to the top. The shorter rectangles represent the logging of
an operation, whereas the taller rectangles correspond to the creation of a checkpoint. It can
be observed that synchronized checkpoints occur less frequently than sequential checkpoints,
but they stop the system during their execution whereas for sequential checkpointing there is
always an agreement quorum of 3 replicas available for continuing processing requests.

An important requirement of this scheme is to use values of P such that the chance of more
than f overlapping checkpoints is negligible. Let Cmax be the estimated maximum interval
required for a replica to take a checkpoint and Tmax the maximum throughput of the service.
Two consecutive checkpoints will not overlap if:

Cmax <
1

Tmax

×
⌊
P

n

⌋
=⇒

P > n× Cmax × Tmax (3.1)

Equation 3.1 defines the minimum value for P that can be used with sequential checkpoints.
In our SCKV-Store example, for a state of 1GB and a 100% 4kB-write workload, we have
Cmax ≈ 15s and Tmax ≈ 4700 ops/s, which means P > 282000. If more frequent checkpoints
are required, the replicas can be organized in groups of at most f replicas to take checkpoints
together.

3.3.3 Collaborative State Transfer
The state transfer protocol is used to update the state of a replica during recovery, by transmitting
log records (L) and checkpoints (C) from other replicas (see Figure 3.5(a)). Typically only one
of the replicas returns the full state and log, while the others may just send a hash of this data
for validation (only required in the BFT case). As shown in §3.2, this approach can degrade
performance during recoveries. Furthermore, it does not work with sequential checkpoints, as
the received state can not be directly validated with hashes of other replicas’ checkpoints (as
they are different). These limitations are addressed with the collaborative state transfer (CST)
protocol.

TClouds D2.2.4 Page 30 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

PBFT,solu6on:onereplica$sends$checkpoint$plus$logandothers$
help$validate$it$providing$hashes$

Replica0 Replica1 Replica2
C"

L"

C"C"

L"L"
:m

e$

(a) PBFT and others (n = 4).

Assump:ons:$
A  f=2$
A  No$other$faults$

Op6mis6c,solu6on,for,f,>,1:onereplica$sends$everything$

1Ast$ 2And$
Faulty'
replica'3Ard$ 4Ath$ 5Ath$ 6Ath$

L1"

C2"

C1"

L1" L1"
L2"

C3"

L1"

L4"

L5"
C5"

L2"

L1"

L5"
L6"
C6"

L4"

L2"

L1"

L4"

C4"

L2"L2"
L3" L3" L3" L3"

:m
e$

(b) CST (n = 7).

Figure 3.5: Data transfer in different state transfer strategies.

Although the two previous techniques work both with crash-tolerant and BFT SMR, the
CST protocol is substantially more complex with Byzantine faults. Consequently, we start by
describing a BFT version of the protocol (which also works for crash faults) and later, at the
end of the section, we explain how CST can be simplified on a crash-tolerant system3.

We designate by leecher the recovering replica and by seeders the replicas that send (parts
of) their state. CST is triggered when a replica (leecher) starts (see Figure 3.6). Its first action is
to use the local log and checkpoint to determine the last logged request and its sequence number
(assigned by the ordering protocol), from now on called agreement id. The leecher then asks
for the most recent logged agreement id of the other replicas, and waits for replies until n − f
of them are collected (including its own id). The ids are placed in a vector in descending order,
and the largest id available in f + 1 replicas is selected, to ensure that such agreement id was
logged by at least one correct replica (steps 1-3).

In BFT-SMaRt there is no parallel execution of agreements, so if one correct replica has
ordered the id-th batch, it means with certainty that agreement id was already processed by at
least f + 1 correct replicas4. The other correct replicas, which might be a bit late, will also
eventually process this agreement, when they receive the necessary messages.

Next, the leecher proceeds to obtain the state up to id from a seeder and the associated
validation data from f other replicas. The active replicas are ordered by the freshness of the
checkpoints, from the most recent to the oldest (step 4). A leecher can make this calculation
based on id, as replicas take checkpoints at deterministic points, as explained in §3.3.2. We
call the replica with i-th oldest checkpoint the i-th replica and the checkpoint Ci. The log of a
replica is divided in segments, and each segment Li is the portion of the log required to update
the state from Ci to the more recent state Ci−1. Therefore, we use the following notion of
equivalence: Ci−1 ≡ Ci +Li. Notice that L1 corresponds to the log records of the requests that
were executed after the most recent checkpoint C1 (see Figure 3.5(b) for n = 7).

The leecher fetches the state from the (f + 1)-th replica (seeder), which comprises the log
segments L1, ..., Lf+1 and checkpoint Cf+1 (step 8). To validate this state, it also gets hashes of
the log segments and checkpoints from the other f replicas with more recent checkpoints (from

3Even though crash fault tolerance is by far more used in production systems, our choice is justified by two
factors. First, the subtleties of BFT protocols require a more extensive discussion. Second, given the lack of a
stable and widely-used open-source implementation of a crash fault tolerance SMR library, we choose to develop
our techniques in a BFT SMR library, so the description is in accordance to our prototype.

4If one employs protocols such as Paxos/PBFT, low and high watermarks may need to be considered.

TClouds D2.2.4 Page 31 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

1. Look at the local log to discover the last executed agreement;

2. Fetch the id of the last executed agreement from n − f replicas (including itself) and save the identifier
of these replicas;

3. id = largest agreement id that is available in f + 1 replicas;

4. Using id , P and n, order the replicas (including itself) with the ones with most recent checkpoints first;

5. V ← ∅; // the set containing state and log hashes

6. For i = 1 to f do:

(a) Fetch Vi = 〈HL1, ...,HLi,HC i〉 from i-th replica;

(b) V ← V ∪ {Vi};

7. r ← f + 1; // replica to fetch state

8. Fetch Sr = 〈L1, ..., Lr, Cr〉 from r-th replica;

9. V ← V ∪ {〈H(Sr.L1), ...,H(Sr.Lr),H(Sr.Cr)〉};

10. Update state using Sr.Cr;

11. v ← 0; // number of validations of Sr

12. For i = r − 1 down to 1 do:

(a) Replay log Sr.Li+1;

(b) Take checkpoint C ′
i and calculate its hash HC ′

i;

(c) If (Vi.HL1..i = Vr.HL1..i) ∧ (Vi.HCi = HC ′
i), v ++;

13. If v ≥ f , replay log Sr.L1 and return; Else, r ++ and go to 8;

Figure 3.6: The CST recovery protocol called by the leecher after a restart. Fetch commands wait for
replies within a timeout and go back to step 2 if they do not complete.

the 1st until the f -th replica) (step 6a). Then, the leecher sets its state to the checkpoint and
replays the log segments received from the seeder, in order to bring up to date its state (steps 10
and 12a).

The state validation is performed by comparing the hashes of the f replicas with the hashes
of the log segments from the seeder and intermediate checkpoints. For each replica i, the
leecher replays Li+1 to reach a state equivalent to the checkpoint of this replica. Then, it creates
a intermediate checkpoint of its state and calculates the corresponding hash (steps 12a and 12b).
The leecher finds out if the log segments sent by the seeder and the current state (after executing
Li+1) match the hashes provided by this replica (step 12c).

If the check succeeds for f replicas, the reached state is valid and the CST protocol can
finish (step 13). If the validation fails, the leecher fetches the data from the (f + 2)-th replica,
which includes the log segments L1, ..., Lf+2 and checkpoint Cf+2 (step 13 goes back to step
8). Then, it re-executes the validation protocol, considering as extra validation information the
hashes that were produced with the data from the (f + 1)-th replica (step 9). Notice that the
validation still requires f + 1 matching log segments and checkpoints, but now there are f + 2
replicas involved, and the validation is successful even with one Byzantine replica. In the worst
case, f faulty replicas participate in the protocol, which requires 2f + 1 replicas to send some
data, ensuring a correct majority and at least one valid state (log and checkpoint).

In the scenario of Figure 3.5(b), the 3rd replica (the (f + 1)-th replica) sends L1, L2, L3 and

TClouds D2.2.4 Page 32 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

C3, while the 2nd replica only transmits HL1 = H(L1), HL2 = H(L2) and HC 2 = H(C2), and
the 1st replica sends HL1 = H(L1) and HC 1 = H(C1). The leecher next replays L3 to get to
state C3 +L3, and takes the intermediate checkpoint C ′2 and calculates the hash HC ′2 = H(C ′2).
If HC ′2 matches HC 2 from the 2nd replica, and the hashes of log segments L2 and L1 from the
3rd replica are equal to HL2 and HL1 from the 2nd replica, then the first validation is successful.
Next, a similar procedure is applied to replay L2 and the validation data from the 1st replica.
Now, the leecher only needs to replay L1 to reach the state corresponding to the execution of
request id.

While the state transfer protocol is running, replicas continue to create new checkpoints
and logs since the recovery does not stop the processing of new requests. Therefore, they are
required to keep old log segments and checkpoints to improve their chances to support the re-
covery of a slow leecher. However, to bound the required storage space, these old files are even-
tually removed, and the leecher might not be able to collect enough data to complete recovery.
When this happens, it restarts the algorithm using a more recent request id (a similar solution
exists in all other state state transfer protocols that we are aware of, e.g., [CL02, CGR07]).

The leecher observes the execution of the other replicas while running CST, and stores all
received messages concerning agreements more recent than id in an out-of-context buffer. At
the end of CST, it uses this buffer to catch up with the other replicas, allowing it to be re-
integrated in the state machine.

Correctness. We present here a brief correctness argument of the CST protocol. Assume that
b is the actual number of faulty (Byzantine) replicas (lower or equal to f) and r the number of
recovering replicas.

In terms of safety, the first thing to observe is that CST returns if and only if the state is
validated by at least f + 1 replicas. This implies that the state reached by the leecher at the end
of the procedure is valid according to at least one correct replica. To ensure that this state is
recent, the largest agreement id that is returned by f + 1 replicas is used.

Regarding liveness, there are two cases to consider. If b+r ≤ f , there are still n−f correct
replicas running and therefore the system could have made progress while the r replicas were
crashed. A replica is able to recover as long as checkpoints and logs can be collected from
the other replicas. Blocking is prevented because CST restarts if any of the Fetch commands
fails or takes too much time. Consequently, the protocol is live if correct replicas keep the logs
and checkpoints for a sufficiently long interval. This is a common assumption for state transfer
protocols. If b + r > f , then there may not be enough replicas for the system to continue
processing. In this case the recovering replica(s) will continuously try to fetch the most up to
date agreement id from n− f replicas (possibly including other recovering replicas) until such
quorum exists. Notice that a total system crash is a special case of this scenario.

Optimizing CST for f = 1. When f = 1 (and thus n = 4), a single recovering replica can
degrade the performance of the system because one of n − f replicas will be transferring the
checkpoint and logs, delaying the execution of the agreements (as illustrated in Figure 3.7(a)).
To avoid this problem, we spread the data transfer between the active replicas through the fol-
lowing optimization in an initial recovery round: the 2nd replica (f + 1 = 2) sends C2 plus
〈HL1, HL2〉 (instead of the checkpoint plus full log), while the 1st replica sends L1 and HC1

(instead of only hashes) and the 3rd replica sends L2 (instead of not participating). If the valida-
tion of the received state fails, then the normal CST protocol is executed. This optimization is
represented in Figure 3.7(b), and in §3.5 we show the benefits of this strategy.

TClouds D2.2.4 Page 33 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Assump:ons:$
A  f=1$
A  |C|$≈$(|LU|+|LL|)/2$

Op6mis6c,solu6on,for,f=1:$every$replica$sends$~1/3ofthe$data$

C1"

L1"

1Ast$replica$ 2And$replica$ 3Ard$replica$

C2"

C3"

L2" L2"

L3"

L1" L1"

:m
e$

(a) General CST.

Assump:ons:$
A  f=1$
A  |C|$≈$(|LU|+|LL|)/2$

Op6mis6c,solu6on,for,f=1:$every$replica$sends$~1/3ofthe$data$

C1"

L1"

1Ast$replica$ 2And$replica$ 3Ard$replica$

C2"

C3"

L2" L2"

L3"

L1" L1"

:m
e$

(b) Optimized CST.

Figure 3.7: General and optimized CST with f = 1.

Simplifications for crash faults. When the SMR only needs to tolerate crash faults, a much
simpler version of CST can be employed. The basic idea is to execute steps 1-4 of CST and then
fetch and use the checkpoint and log from the 1st (most up to date) replica, since no validation
needs to be performed. If f = 1, a analogous optimization can be used to spread the burden of
data transfer among the two replicas: the 1st replica sends the checkpoint while the 2nd replica
sends the log segment.

3.4 Implementation: Dura-SMaRt
In order to validate our techniques, we extended the open-source BFT-SMART replication
library [BSA] with a durability layer, placed between the request ordering and the service.
We named the resulting system Dura-SMaRt, and used it to implement two applications: a
consistent key-value store and a coordination service.

Adding durability to BFT-SMART. BFT-SMaRt originally offered an API for invoking and
executing state machine operations, and some callback operations to fetch and set the service
state. The implemented protocols are described in [SB12] and follow the basic ideas introduced
in PBFT and Aardvark [CL02, CWA+09]. BFT-SMaRt is capable of ordering more than 100K
0-byte msg/s (the 0/0 microbenchmark used to evaluate BFT protocols [GKQV10,KAD+07b])
in our environment. However, this throughput drops to 20K and 5K msgs/s for 1kB and 4kB
message sizes, respectively (the workloads we use – see §3.5).

We modified BFT-SMaRt to accommodate an intermediate Durability layer implementing
our techniques at the server-side, as described in Figure 3.8, together with the following mod-
ifications on BFT-SMaRt. First, we added a new server side operation to deliver batches of
requests instead of one by one. This operation supplies ordered but not delivered requests span-
ning one or more agreements, so they can be logged in a single write by the Keeper thread.
Second, we implemented the parallel checkpoints and collaborative state transfer in the Dura-
Coordinator component, removing the old checkpoint and state transfer logic from BFT-SMaRt
and defining an extensible API for implementing different state transfer strategies. Finally, we
created a dedicated thread and socket to be used for state transfer in order to decrease its inter-
ference on request processing.

SCKV-store. The first system implemented with Dura-SMaRt was a simple and consistent
key-value store (SCKV-Store) that supports the storage and retrieval of key-value pairs, alike to

TClouds D2.2.4 Page 34 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

invoke

setState
getState

Stable$
Storage$

log

Service$

logBatch

ckp

Dura%Coordinator,

SMR$Server$Side$

SMR$Client$Side$

Client$App.$ setState
getState

execute Keeper,

durability
layer

execBatch
invokeST
handlerST

Figure 3.8: The Dura-SMaRt architecture.

other services described in the literature, e.g., [CST+10, ORS+11]. The implementation of the
SCKV-Store was greatly simplified, since consistency and availability come directly from SMR
and durability is achieved with our new layer.

Durable DepSpace (DDS). The second use case is a durable extension of the DepSpace co-
ordination service [BACF08], which originally stored all data only in memory. The system,
named Durable DepSpace (DDS), provides a tuple space interface in which tuples (variable-
size sequences of typed fields) can be inserted, retrieved and removed. There are two important
characteristics of DDS that differentiate it from similar services such as Chubby [Bur06] and
ZooKeeper [HKJR10]: it does not follow a hierarchical data model, since tuple spaces are, by
definition, unstructured; and it tolerates Byzantine faults, instead of only crash faults. The ad-
dition of durability to DepSpace basically required the replacement of its original replication
layer by Dura-SMaRt.

3.5 Evaluation

This section evaluates the effectiveness of our techniques for implementing durable SMR ser-
vices. In particular, we devised experiments to answer the following questions: (1) What is the
cost of adding durability to SMR services? (2) How much does parallel logging improve the
efficiency of durable SMR with synchronous disk and SSD writes? (3) Can sequential check-
points remove the costs of taking checkpoints in durable SMR? (4) How does collaborative
state transfer affect replica recoveries for different values of f? Question 1 was addressed in
§3.2, so we focus on questions 2-4.

Case studies and workloads. As already mentioned, we consider two SMR-based services
implemented using Dura-SMaRt: the SCKV-Store and the DDS coordination service. Although
in practice, these systems tend to serve mixed or read-intensive workloads [CST+10,HKJR10],
we focus on write operations because they stress both the ordering protocol and the durable stor-
age (disk or SSD). Reads, on the other hand, can be served from memory, without running the
ordering protocol. Therefore, we consider a 100%-write workload, which has to be processed
by an agreement, execution and logging. For the SCKV-Store, we use YCSB [CST+10] with
a new workload composed of 100% of replaces of 4kB-values, making our results comparable
to other recent SMR-based storage systems [BBH+11, RST11, WAD12]. For DDS, we con-
sider the insertion of random tuples with four fields containing strings, with a total size of 1kB,
creating a workload with a pattern equivalent to the ZooKeeper evaluation [HKJR10, JRS11].

TClouds D2.2.4 Page 35 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Experimental environment. All experiments, including the ones in §3.2, were executed in a
cluster of 14 machines interconnected by a gigabit ethernet. Each machine has two quad-core
2.27 GHz Intel Xeon E5520, 32 GB of RAM memory, a 146 GB 15000 RPM SCSI disk and a
120 GB SATA Flash SSD. We ran the IOzone benchmark5 on our disk and SSD to understand
their performance under the kind of workload we are interested: rewrite (append) for records of
1MB and 4MB (the maximum size of the request batch to be logged in DDS and SCKV-Store,
respectively). The results are:

Record length Disk SSD
1MB 96.1 MB/s 128.3 MB/s
4MB 135.6 MB/s 130.7 MB/s

Parallel logging. Figure 3.9(a) displays latency-throughput curves for the SCKV-Store con-
sidering several durability variants. The figure shows that naive (synchronous) disk and SSD
logging achieve a throughput of 63 and 1017 ops/s, respectively, while a pure memory version
with no durability reaches a throughput of around 4772 ops/s.

Parallel logging involves two ideas, the storage of batches of operations in a single write and
the execution of operations in parallel with the secondary storage accesses. The use of batch
delivery alone allowed for a throughput of 4739 ops/s with disks (a 75× improvement over
naive disk logging). This roughly represents what would be achieved in Paxos [KA08,Lam98],
ZooKeeper [HKJR10] or UpRight [CKL+09], with requests being logged during the agreement
protocol. Interestingly, the addition of a separated thread to write the batch of operations, does
not improve the throughput of this system. This occurs because a local put on SCKV-Store
replica is very efficient, with almost no effect on the throughput.

The use of parallel logging with SSDs improves the latency of the system by 30-50ms
when compared with disks until a load of 4400 ops/s. After this point, parallel logging with
SSDs achieves a peak throughput of 4500 ops/s, 5% less than parallel logging with disk (4710
ops/s), with the same observed latency. This is consistent with the IOzone results. Overall,
parallel logging with disk achieves 98% of the throughput of the pure memory solution, being
the replication layer the main bottleneck of the system. Moreover, the use of SSDs neither solves
the problem that parallel logging addresses, nor improves the performance of our technique,
being thus not effective in eliminating the log bottleneck of durable SMR.

Figure 3.9(b) presents the results of a similar experiment, but now considering DDS with
the same durability variants as in SCKV-Store. The figure shows that a version of DDS with
naive logging in disk (resp. SSD) achieves a throughput of 143 ops/s (resp. 1900 ops/s), while a
pure memory system (DepSpace), reaches 14739 ops/s. The use of batch delivery improves the
performance of disk logging to 7153 ops/s (a 50× improvement). However, differently from
what happens with SCKV-Store, the use of parallel logging in disk further improves the system
throughput to 8430 ops/s, an improvement of 18% when compared with batching alone. This
difference is due to the fact that inserting a tuple requires traversing many layers [BACF08] and
the update of an hierarchical index, which takes a non-negligible time (0.04 ms), and impacts
the performance of the system if done sequentially with logging. The difference would be even
bigger if the SMR service requires more processing. Finally, the use of SSDs with parallel
logging in DDS was more effective than with the SCKV-Store, increasing the peak throughput
of the system to 9250 ops/s (an improvement of 10% when compared with disks). Again, this
is consistent with our IOzone results: we use 1kB requests here, so the batches are smaller than
in SCKV-Store, and SSDs are more efficient with smaller writes.

5http://www.iozone.org.

TClouds D2.2.4 Page 36 of 118

http://www.iozone.org

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5

L
a
te

n
cy

 (
m

se
c)

Throughput (Kops/sec)

Naive (Disk)
Naive (SSD)

Batching (Disk)
Par. Log (Disk)
Par. Log (SSD)

Pure Memory

(a) SCKV-Store.

 0

 100

 200

 300

 400

 0 2 4 6 8 10 12 14 16

L
a
te

n
cy

 (
m

se
c)

Throughput (Kops/sec)

(b) Durable DepSpace.

Figure 3.9: Latency-throughput curves for several variants of the SCKV-Store and DDS considering
100%-write workloads of 4kB and 1kB, respectively. Disk and SSD logging are always done syn-
chronously. The legend in (a) is valid also for (b).

Notice that DDS could not achieve a throughput near to pure memory. This happens be-
cause, as discussed in §3.3.1, the throughput of parallel logging will be closer to a pure memory
system if the time required to process a batch of requests is akin to the time to log this batch. In
the experiments, we observed that the workload makes BFT-SMaRt deliver batches of approx-
imately 750 requests on average. The local execution of such batch takes around 30 ms, and
the logging of this batch on disk entails 70 ms. This implies a maximum throughput of 10.750
ops/s, which is close to the obtained values. With this workload, the execution time matches
the log time (around 500 ms) for batches of 30K operations. These batches require the replica-
tion library to reach a throughput of 60K 1kB msgs/s, three times more than what BFT-SMaRt
achieves for this message size.

Sequential Checkpointing. Figure 3.10 illustrates the effect of executing sequential check-
points in disks with SCKV-Store6 during a 3-minute execution period.

When compared with the results of Figure 3.2 for synchronized checkpoints, one can ob-
serve that the unavailability periods no longer occur, as the 4 replicas take checkpoints sepa-
rately. This is valid both when there is a high and medium load on the service and with disks
and SSDs (not show). However, if the system is under stress (high load), it is possible to no-
tice a periodic small decrease on the throughput happening with both 500MB and 1GB states
(Figures 3.10(a) and 3.10(b)). This behavior is justified because at every

⌊
P
n

⌋
requests one of

the replicas takes a checkpoint. When this occurs, the replica stops executing the agreements,
which causes it to become a bit late (once it resumes processing) when compared with the other
replicas. While the replica is still catching up, another replica initiates the checkpoint, and
therefore, a few agreements get delayed as the quorum is not immediately available. Notice

6Although we do not show checkpoint and state transfer results for DDS due to space constraints, the use of our
techniques bring the same advantage as on SCKV-Store. The only noticeable difference is due to the fact that DDS
local tuple insertions are more costly than SCKV-Store local puts, which makes the variance on the throughput of
sequential checkpoints even more noticeable (especially when the leader is taking its checkpoint). However, as in
SCKV-Store, this effect is directly proportional to the load imposed to the system.

TClouds D2.2.4 Page 37 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

 0

 1

 2

 3

 4

 0 50 100 150Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Time (seconds)

High load
Medium load

(a) 500MB state.

 0

 1

 2

 3

 4

 0 50 100 150Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Time (seconds)

High load
Medium load

(b) 1GB state.

Figure 3.10: SCKV-Store throughput with sequential checkpoints with different write-only loads and
state size.

that this effect does not exist if the system has less load or if there is sufficient time between
sequential checkpoints to allow replicas to catch up (“Medium load” line in Figure 3.10).

Collaborative State Transfer. This section evaluates the benefits of CST when compared to
a PBFT-like state transfer in the SCKV-Store with disks, with 4 and 7 replicas, considering
two state sizes. In all experiments a single replica recovery is triggered when the log size is
approximately twice the state size, to simulate the condition of Figure 3.7(b).

Figure 3.11 displays the observed throughput of some executions of a system with n = 4,
running PBFT and the CST algorithm optimized for f = 1, for states of 500MB and 1GB,
respectively. A PBFT-like state transfer takes 30 (resp. 16) seconds to deliver the whole 1 GB
(resp. 500MB) of state with a sole replica transmitter. In this period, the system processes 741
(resp. 984) write ops/sec on average. CST optimized for f = 1 divides the state transfer by
three replicas, where one sends the state and the other two up to half the log each. Overall, this
operation takes 42 (resp. 20) seconds for a state of 1GB (resp. 500MB), 28% (resp. 20%) more
than with the PBFT-like solution for the same state size. However, during this period the system
processes 1809 (resp. 1426) ops/sec on average. Overall, the SCKV-Store with a state of 1GB
achieves only 24% (or 32% for 500MB-state) of its normal throughput with a PBFT-like state
transfer, while the use of CST raises this number to 60% (or 47% for 500MB-state).

Two observations can be made about this experiment. First, the benefit of CST might not
be as good as expected for small states (47% of the normal throughput for a 500MB-state) due
to the fact that when fetching state from different replicas we need to wait for the slowest one,
which always brings some degradation in terms of time to fetch the state (20% more time).
Second, when the state is bigger (1GB), the benefits of dividing the load among several replicas
make state transfer much less damaging to the overall system throughput (60% of the normal
throughput), even considering the extra time required for fetching the state (+28%).

We did an analogous experiment for n = 7 (not shown due to space constraints) and ob-
served that, as expected, the state transfer no longer causes a degradation on the system through-
put (both for CST and PBFT) since state is fetched from a single replica, which is available
since n = 7 and there is only one faulty replica (see Figure 3.5). We repeated the experi-
ment for n = 7 with the state of 1GB being fetched from the leader, and we noticed a 65%
degradation on the throughput. A comparable effect occurs if the state is obtained from the
leader in CST. As a cautionary note, we would like to remark that when using spare replicas

TClouds D2.2.4 Page 38 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

 0

 1

 2

 3

 4

 50 100 150Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Time (seconds)

transfer

started

transfer

finished

PBFT

CST

(a) 500MB and n = 4.

 0

 1

 2

 3

 4

 50 100 150Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Time (seconds)

transfer

started

transfer

finished

PBFT

CST

(b) 1GB and n = 4.

Figure 3.11: Effect of a replica recovery on SCKV-Store throughput using CST with f = 1 and different
state sizes.

for “cheap” faulty recovery, it is important to avoid fetching the state from the leader replica
(as in [Bur06, CGR07, HKJR10, RST11]) because this replica dictates the overall system per-
formance.

3.6 Related Work

Over the years, there has been a reasonable amount of work about stable state management
in main memory databases (see [GMS92] for an early survey). In particular, parallel log-
ging shares some ideas with classical techniques such as group commit and pre-committed
transactions [DKO+84] and the creation of checkpoints in background has also been sug-
gested [Lam91]. Our techniques were however developed with the SMR model in mind, and
therefore, they leverage the specific characteristics of these systems (e.g., log groups of requests
while they are executed, and schedule checkpoints preserving the agreement quorums).

Durability management is a key aspect of practical crash-FT SMR-like systems [BBH+11,
CGR07, HKJR10, JRS11, RST11, WAD12]. In particular, making the system use the disk effi-
ciently usually requires several hacks and tricks (e.g., non-transparent copy-on-write, request
throttling) on an otherwise small and simple protocol and service specification [CGR07]. These
systems usually resort to dedicated disks for logging, employ mostly synchronized check-
points and fetch the state from a leader [CGR07, HKJR10, RST11]. A few systems also delay
state transfer during load-intensive periods to avoid a noticeable service degradation [HKJR10,
WAD12]. All these approaches either hurt the SMR elegant programming model or lead to the
problems described in §3.2.2. For instance, recent consistent storage systems such as Windows
Azure Storage [Cal11] and Spanner [Cor12] use Paxos together with several extensions for en-
suring durability. We believe works like ours can improve the modularity of future systems
requiring durable SMR techniques.

BFT SMR systems use logging, checkpoints, and state transfer, but the associated perfor-
mance penalties often do not appear in the papers because the state is very small (e.g., a counter)
or the checkpoint period is too large (e.g., [CL02, CWA+09, GKQV10, KBC+12, KAD+07b,
VCBL09, VCB+13]). A notable exception is UpRight [CKL+09], which implements durable
state machine replication, albeit without focusing on the efficiency of logging, checkpoints and
state transfer. In any case, if one wants to sustain a high-throughput (as reported in the papers)

TClouds D2.2.4 Page 39 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

for non-trivial states, the use of our techniques is fundamental. Moreover, any implementation
of proactive recovery [CL02, SBC+10] requires an efficient state transfer.

PBFT [CL02] was one of the few works that explicitly dealt with the problem of optimiz-
ing checkpoints and state transfer. The proposed mechanism was based on copy-on-write and
delta-checkpoints to ensure that only pages modified since the previous checkpoint are stored.
This mechanism is complementary to our techniques, as we could use it together with the se-
quential checkpoints and also to fetch checkpoint pages in parallel from different replicas to
improve the state transfer. However, the use of copy-on-write may require the service defini-
tion to follow certain abstractions [CRL03, CKL+09], which can increase the complexity of
the programming model. Additionally, this mechanism, which is referred in many subsequent
works (e.g., [GKQV10, KAD+07b]), only alleviates but does not solve the problems discussed
in §3.2.2.

A few works have described solutions for fetching different portions of a database state from
several “donors” for fast replica recovery or database cluster reconfiguration (e.g., [KBB01]).
The same kind of techniques were employed for fast replica recovery in group communication
systems [KZHR07] and, more recently, in main-memory-based storage [ORS+11]. There are
three differences between these works and ours. First, these systems try to improve the recovery
time of faulty replicas, while CST main objective is to minimize the effect of replica recovery
on the system performance. Second, we are concerned with the interplay between logging and
checkpoints, which is fundamental in SMR, while these works are more concerned with state
snapshots. Finally, our work has a broader scope in the sense that it includes a set of com-
plementary techniques for Byzantine and crash faults in SMR systems, while previous works
address only crash faults.

3.7 Conclusion
This chapter discusses several performance problems caused by the use of logging, checkpoints
and state transfer on SMR systems, and proposes a set of techniques to mitigate them. The tech-
niques – parallel logging, sequential checkpoints and collaborative state transfer – are purely
algorithmic, and require no additional support (e.g., hardware) to be implemented in commodity
servers. Moreover, they preserve the simple state machine programming model, and thus can
be integrated in any crash or Byzantine fault-tolerant library without impact on the supported
services.

The techniques were implemented in a durability layer for BFT-SMART, which was used
to develop two representative services: a KV-store and a coordination service. Our results show
that these services can reach up to 98% of the throughput of pure memory systems, remove most
of the negative effects of checkpoints and substantially decrease the throughput degradation
during state transfer. We also show that the identified performance problems can not be solved
by exchanging disks by SSDs, highlighting the need for techniques such as the ones presented
here.

TClouds D2.2.4 Page 40 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Chapter 4

Evaluating BFT-SMART over a WAN

Chapter Authors:
João Sousa and Alysson Bessani (FFCUL).

4.1 Introduction

As already discussed in previous chapters, the State Machine Replication technique [Lam78,
Sch90] enables an arbitrary number of client to issue requests into a set of replicas. These repli-
cas implement a stateful service that updates its state after receiving those requests. The goal of
this technique is to enforce strong consistency within the service, by making it completely and
accurately replicated at each replica. The key to make the state evolve with such consistency
is to execute a distributed protocol that forces each operation sent by clients to be delivered at
each replica in the exact same order. When clients get the service’s reply, their requests are
already reflected in the service’s state.

This chapter reports preliminary results regarding the performance of a Byzantine fault-
tolerant (BFT) state machine replication (SMR) protocol executing over a wide area network
(WAN). Besides evaluating the protocol’s performance, we also implemented and evaluated
some optimizations from the literature which aim to render executions of SMR protocols more
stable and efficient across WAN environments. The experiments presented in this chapter were
made using BFT-SMART [BSA] (described in Chapter 2), a library that implements a generic
BFT SMR protocol similar to the well known PBFT [CL02].

The main motivation behind these preliminary experiments is twofold. First, we wanted to
evaluate the behavior of a generic BFT SMR protocol when deployed on a large scale envi-
ronment, which represents a cloud-of-clouds scenario. Secondly, there is significant research
in optimizing SMR for large scale environments (e.g., [ADD+10, MJM08, VCBL10]) which
propose several optimizations to SMR aimed at improving performance in a WAN. We decided
to perform our own evaluation of some of the optimizations introduced in those works. We did
this by implementing them in a generic BFT SMR protocol (used by BFT-SMART).

Both LAN and WAN settings assume the same system model; some hosts are assumed to be
malicious, and the network connecting each host does not offer any time guarantees. This is in
accordance to the assumptions made by BFT-SMART protocol [SB12] (also TClouds D2.2.2).
The practical difference is that, in a WAN setting, network delay is much higher and variable,
and message loss is much more frequent than it is in a LAN.

Our preliminary results suggest that a generic BFT SMR protocols can display stable per-
formance across WANs. However, out of the three optimizations evaluated, only one seemed
to significantly improve the protocol’s performance; the remaining two did not introduce any
observable improvement. Further experiments will be required in order to reach conclusive
results.

TClouds D2.2.4 Page 41 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

The rest of this chapter is organized as follows. We discuss some related work in §5.6.
§4.3 presents the hypotheses we aim to investigate. §4.4 describes the methodology used to
conducted the experiments. We report our results for each hypothesis in §4.5, §4.6, §4.7 and
§4.8. Finally, we discuss future work in §4.9 and present our conclusions in §4.10.

4.2 Related Work
In this section we give a brief overview of related work regarding Byzantine fault tolerance,
state machine replication, wide area replication and wide area measurements.

Byzantine fault tolerance Byzantine fault tolerance (BFT) is a sub-field of fault tolerance
research within distributed systems. In classical fault tolerance, processes are assumed to fail
only by stopping to execute. On the other hand, in the Byzantine faults model, processes of
a distributed system are allowed to fail in a arbitrary way, i.e., a fault is characterized as any
deviation from the specified algorithm/protocol imposed on a process. Thus, Byzantine fault
tolerance is the body of techniques that aims at devising protocols, algorithms and services that
are able to cope with such arbitrary behavior of the processes that comprise the system [LSP82].
In Byzantine fault tolerance it is common practice to make assumptions as weak as possible,
not only from the processes that comprise the system, but also from the network that connects
them. In BFT, it is typically adopted either the partially synchronous or asynchronous system
model [HT94].

Castro and Liskov showed that executing SMR under Byzantine faults is feasible, by pre-
senting the PBFT protocol [CL02]. PBFT is capable of withstanding up to f Byzantine replicas
out of at least 3f +1. The main difference between PBFT and previous proposals for BFT were
that PBFT avoided expensive cryptographic operations such as digital signatures by using MAC
vectors instead. PBFT spawned a renaissance in BFT research, and is considered the baseline
for all BFT SMR protocols published afterwards. Moreover, the idea of porting SMR protocols
into WANs also found new momentum.

Wide Area Replication Mencius [MJM08] is a SMR protocol derived from Paxos [Lam98,
Les01] which is optimized to execute in WANs. It can survive up to f crashed replicas out of
at least 2f + 1. According to the paper, its rotating coordinator mechanism can significantly
reduce clients’ latency in WANs. Replicas take turns as the leader and propose client requests in
their turns. Clients send requests to the replicas in their sites, which are submitted for ordering
when the replicas becomes the leader.

Veronese et. al. introduced Efficient Byzantine Agreement for Wide-Area Networks (EBAWA)
[VCBL10], a BFT SMR protocol optimized for WANs. Since it uses the trusted/trustworthy
USIG service introduced in [VCB+13], it requires only 2f + 1 replicas to tolerate f Byzantine
faults. Similarly to Mencius, it uses a rotating leader scheme to prevent a faulty leader from
degrading system performance.

Measurements The aforementioned replication protocols rely on some form of quorum sys-
tems to be capable of guaranteeing their safety properties. Given a set of hosts, a quorum system
is a collection of sets of hosts (called quorums) such that any two quorums intersect in at least
one common host [Gif79, GMB85]. Since quorum systems are building blocks used to imple-
ment a variety of services (e.g., consensus [Cac09], mutual exclusion [AA91], distributed access
control [NW98]), there is interest in predicting their availability and performance in WANs.

TClouds D2.2.4 Page 42 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

The traditional approaches for evaluating quorum systems used to be either by analysis
and/or by emulation. Amir et. al. proposed in [AW96] an empirical approach, which con-
sisted of gathering uptime data from a real system consisting of multiple hosts. These hosts
were scattered across two distinct sites which communicated with each other over the internet.
The aforementioned data was obtained using a group communication framework responsible
for generating uptime logs for each host in the experiment. These logs were then integrated into
one single global log, which represented the availability of all hosts within some time period.
According to the authors, the results obtained suggest that machine crashes are correlated, net-
work partitions are frequent, and a system crash is a rare, yet possible event. They also confirm
that, if network partitions are frequent, dynamic quorum systems (e.g., [Her87]) yield better
availability than static quorums.

Bakr et. al. also employed empirical measurements in [BK02]. Whereas Amir et. al. inves-
tigated the availability of a quorum system, Bakr et. al. investigate the latency of distributed
algorithms over the internet. Both works used real hosts to obtain their measurements, but the
methodology was different: instead of using a communication group framework to construct
logs, Bakr et. al. implemented their own daemons that would periodically initiate the algo-
rithms, and keep track of the running time for each iteration. Furthermore, the hosts were geo-
graphically distributed across more than two sites. Upon evaluating some of these algorithms,
the authors observed the message loss rate over the internet was not negligible. Moreover, algo-
rithms with high message complexity display higher loss rate. This is evident in protocols that
employ all-to-all communication, like PBFT and BFT-SMART.

However, the experiments performed in [BK02] did not assume quorum systems, i.e., each
interaction of a communication round was only considered finished once every host received
and replied all messages. In a quorum system, each hosts only waits for a majority of hosts to
receive/reply to all messages. The authors conducted further research in [BK08] considering
quorum systems and how the number of hosts probed by a client impacts latency and avail-
ability. Furthermore, two quorum types were studied: (1) majority quorum systems, where the
quorums are sets that include a majority of the hosts, and (2) crumbling walls quorum sys-
tems1 [PW97], which uses smaller quorums with varying sizes. The authors argue that their
results suggest that majority quorums do not perform well with small probe sets. Moreover,
the authors also claim that increasing the size of the probe by as few as a single host can re-
duce latency by a considerable margin. They also argue that their results show that crumbling
walls can display better latency than majority quorums, and also comparable availability. On
the other hand, this study only investigated availability of quorums as a function of the probing
performed by clients; the behavior of complex distributed protocols which execute over quorum
systems was not explored.

Finally, it is worth mentioning the experiments presented in [AW96, BK02, BK08] were
conducted from 1996 to 2008. Given the current advances in network infrastructures, the same
experiments may yield different results if they were executed in 2013.

4.3 Hypotheses

In the experiments reported in this chapter, we evaluated some protocol optimizations known
in the literature, which are implemented by the SMR protocols described in §5.6-c, and one

1In a crumbling wall, hosts are logically arranged in rows of varying widths, and a quorum is the union of one
full row and a representative from every row below the full row.

TClouds D2.2.4 Page 43 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

optimization related to quorum systems proposed in [Gif79,Pâr86]. More precisely, we want to
test the following hypotheses:

1. The leader location influences the observed latency of the protocol (§4.5);

2. A bigger quorum size can reduce the observed latency (§4.6);

3. Read-only and tentative executions significantly reduces the observed latency (§4.7).

Finally, we evaluated the stability of BFT-SMART’s protocol within a WAN, i.e., how much
the latency observed by BFT-SMART clients vary across a long execution. More specifically,
the following hypothesis was tested in §4.8: A generic BFT SMR protocol is stable and pre-
dictable enough in a WAN environment and can be used to implement services capable of ex-
hibiting satisfactory performance and usability.

4.4 Methodology
The following experiments were conducted over the course of approximately 40 days on Planet-
lab, a distributed testbed scattered throughout the world, dedicated to computer networking and
distributed systems research. A total of eight host were selected for these experiments. These
hosts are listed in Table 4.1, and were divided into groups A and B, each one executing a single
instance of a simple benchmarking application implemented over BFT-SMART.

Group A is comprised of a set of 6 replicas, whereas group B is comprised of 4. Further-
more, replica 1 is represented in 2 hosts. The reasons for this are the following: (1) one extra
host was necessary for the experiment described in §4.6, and (2) the original host for replica 1
(Italy, Parma) became unavailable during the course of the experiments. Hence, we needed to
deploy a new host to take its place (Braga, Portugal).

No additional hosts were used to run the clients. Each host ran two processes simultane-
ously: one executed a BFT-SMART replica, and the other ran multiple threads which imple-
mented BFT-SMART clients. Each client sent a request to the replicas every 2 seconds. A
distinguished client at each host was programmed to write its observed latency into a log file.
Each client issued a 4 kB request, and received a 4 kB reply.

4.5 Leader Location
The goal of this first experiment is to observe how much the leader’s proximity to an aggre-
gate of clients can improve their observed latency. This is motivated by the fact that Men-
cius [MJM08] and EBAWA [VCBL10] both use a rotating leader scheme to improve client’s
latency: if the leader is close to the clients, their messages arrive sooner and thus are ordered
faster.

This experiment ran on Group B with an aggregate of 10 clients. The experiment was
repeated 4 times, each one placing the aggregate in a distinct host. Each iteration took approx-
imately one day to run. Only one client was launched on the rest of the hosts that did not had
the aggregate.

Table 4.2 presents the average latencies observed by client in each distinct location. Each
row depicts the observed latency for the client location, whereas each column depicts the lo-
cation of the aggregate. In the case of Gliwice - where clients run in the same machine as the

TClouds D2.2.4 Page 44 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Group A
Replica Location Hostname
0 (leader) Birmingham, England planetlab1.aston.ac.uk

1
Italy, Parma planet1.unipr.it
Portugal, Braga planetlab-um00.di.uminho.pt

2 Germany, Darmstadt host2.planetlab.informatik.tu-darmstadt.de
3 Norway, Oslo planetlab1.ifi.uio.no
4 Belgium, Namur orval.infonet.fundp.ac.be

Group B
Replica Location Hostname
0 (leader) Poland, Gliwice plab4.ple.silweb.pl
1 Spain, Madrid utet.ii.uam.es
2 France, Paris ple3.ipv6.lip6.fr
3 Switzerland, Basel planetlab-1.cs.unibas.ch

Table 4.1: Hosts used in experiments

leader - the average latency was lowest when the aggregate was placed in the same host as the
leader. Moreover, for the rest of the locations, latency was highest when they also hosted the
aggregate (only exception being Basel). This indicates that moving an aggregate of clients close
to the leader may improve latency. However, if the leader is in a distinct site, client latency tends
to increase at the site that hosts the aggregate.

XXXXXXXXXXXXClient
Aggregate

Gliwice Madrid Paris Basel

Gliwice 112 ± 54.07 117 ± 211.02 113 ± 34.44 118 ± 39.61
Madrid 120 ± 44.78 122 ± 158.38 122 ± 150.28 90 ± 42.12
Paris 120 ± 68.64 123 ± 230.96 125 ± 90.71 94 ± 56.56
Basel 119 ± 182.55 122 ± 151.83 119 ± 33.50 96 ± 173.31

Table 4.2: Average latency and standard deviation observed in Group B’s distinguished clients,
with the leader in Gliwice. All values are given in milliseconds.

Figure 4.1 presents the cumulative distribution for the latencies observed by distinguished
clients in Gliwice and Madrid. Figure 4.1(a) illustrate the latency when the aggregate is close
to the leader (both located in Gliwice), whereas 4.1(b) illustrate the latency observed once the
leader and aggregate are detached (leader located in Gliwice, aggregate in Madrid).

Despite placing the aggregate close to the leader, the above results suggest that doing so just
barely improves client latency (e.g, moving the aggregate from Madrid to Gliwice results in a
average improvement of less than 3%). There are two possible explanations for such small ben-
efit: a) BFT-SMART’s protocol needs to execute two all-to-all communication steps, which
combined take much more time to finish than the time it takes for the clients to contact all
replicas (regardless of their geographic location). Mencius and EBAWA are able to avoid such
communication complexity because, unlike BFT-SMART, they do not assume a full BFT model
(Mencius assumes crash faults and EBAWA uses a trusted component); b) The size of the mes-
sage sent on the one-to-all communication step initialized by the leader is much larger than any
of the all-to-all communication steps sent afterwards (since they only contain a cryptographic

TClouds D2.2.4 Page 45 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

 0.5

 0.9
 0.95

C
u
m

u
la

ti
v
e
 p

ro
b

a
b
ili

ty

Latency (miliseconds)

Gliwice
Madrid

(a) Aggregate in Gliwice.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

 0.5

 0.9
 0.95

C
u
m

u
la

ti
v
e
 p

ro
b

a
b
ili

ty

Latency (miliseconds)

Gliwice
Madrid

(b) Aggregate in Madrid.

Figure 4.1: CDF of latencies with aggregates in different locations and leader in Gliwice.

hash of the requests being ordered). The results shown in §4.7 suggests this is the correct ex-
planation. Given these results, it does not seem to be advantageous to periodically change the
leader’s location.

4.6 Quorum Size

The purpose of this experiment was to observe how client latency is affected by the quorum size
demanded by the protocol. This is motivated by the works of Gifford [Gif79] and Pâris [Pâr86],
which use voting schemes with additional hosts to improve availability. While Gifford makes
all hosts hold a copy of the state with distinct voting weights, Pâris makes a distinction between
hosts that hold a copy of the state and hosts that do not hold such copy, but still participate in
the voting process (thus acting solely as witnesses).

This experiment ran on Group A, with replica 1 hosted in Braga. It was repeated twice: one
using 4 hosts and other using 5. BFT-SMART was modified to use only 3 replicas out of the
whole set in each iteration (thus, in each execution waiting for 3/4 and 3/5 replicas respectively).
Each experiment executed for approximately 24 hours. Five clients were launched at each host,
creating a total of 20 clients in the experiment.

Client Location
Quorum size

3/4 3/5
Birmingham 551 ± 1440.44 812 ± 1319.025

Braga 258 ± 132.83 171 ± 38.3
Darmstadt 266 ± 149.89 200 ± 291.88

Oslo 260 ± 131.027 203 ± 203.39

Table 4.3: Average latency and standard deviation observed in Group A. All values are given in
milliseconds.

The results shown in Table 4.3 display the average latency and standard deviation observed
in the distinguished clients in both iterations. After running the experiment with one more
replica in the group, both average latency and standard deviation decreased in all distinguished
clients (with the exception of Birmingham). Since BFT-SMART still waits for the same number
of replies in each communication step, the slowest replica within that set is replaced by the

TClouds D2.2.4 Page 46 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

additional one, thus decreasing latency. Birmingham did not display this behavior because the
host was visibly unstable throughout both iterations.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500

 0.5

 0.9
 0.95

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Latency (miliseconds)

Quorum size: 3/4
Quorum size: 3/5

Figure 4.2: Cumulative distribution of latencies observed in Braga (group A).

The difference between both iterations is better illustrated in Figure 4.2, which displays
the cumulative distribution function of the latency observed in Braga’s distinguished client.
When using 3/4 quorums, the 95th percentile of all latencies is approximately 350 millisec-
onds, whereas when using 3/5 the same percentile is approximately 240 milliseconds. This
observation further indicates that using additional replicas can improve the latency observed by
clients.

4.7 Communication Steps
The purpose of the following experiments is to observe how client latency is affected by the
amount of communication steps performed by the BFT SMR protocol. More precisely, we
wanted to observe how efficient read-only and tentative executions are in a WAN. These two
optimizations are proposed in PBFT [CL02] to reduce latency. The message pattern for each of
these optimizations is illustrated in Figure 4.3.

Figure 4.3(a) depicts the normal execution of our generic SMR protocol, which is comprised
of 5 communications steps (as in BFT-SMART). Figure 4.3(b) displays the message pattern for
tentative executions. This optimization reduces the number of communication steps from 4 to 5
by bypassing one of the all-to-all communication steps of normal execution. This optimization
comes at the cost of potentially needing to perform a rollback on the application state. Figure
4.3(c) shows the message pattern for read-only executions. This optimization enables the clients
to fetch a response from the service in only 2 communication steps (the client’s request and the
replicas’ replies). However, this optimization can only be used to read the state from the service,
and never to modify it.

The experiment here reported ran on Group B. To perform the tentative executions, BFT-
SMART was modified to skip one of the all-to-all communication steps specified by its protocol
[SB12]. Read-only executions were already implemented in BFT-SMART. Each iteration was
executed for approximately 12 hours. Five clients were launched at each host, thus creating a
total of 20 clients in the experiment.

Table 4.4 shows the average latency and standard deviation observed by the distinguished
clients in each iteration. Figure 4.4 depicts the cumulative distribution for latencies observed

TClouds D2.2.4 Page 47 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

C

R0

R1

R2

R3

(a) Normal execution.

C

R0

R1

R2

R3

(b) Tentative execution.

C

R0

R1

R2

R3

(c) Read-only execution.

Figure 4.3: Message patterns evaluated.

Client Location
Execution Type

Read Only Tentative Normal
Gliwice 59 ± 11.14 100 ± 35.79 112 ± 29.33
Madrid 31 ± 6.86 112 ± 37.09 122 ± 183.54
Paris 25 ± 154.32 110 ± 39.38 118 ± 43.61
Basel 33 ± 224.7 110 ± 35.78 117 ± 30.315

Table 4.4: Average latency and standard deviation observed in Group B. All values are given in
milliseconds.

by Madrid’s distinguished clients for each type of execution. Both Table 4.4 and Figure 4.4
show that read-only execution significantly exhibits the lowest latency, finishing each execution
faster than any of the other iterations (in Madrid’s case, as less as 25.4% of the latency of normal
execution).

Tentative execution also manages to reach lower latency values than normal execution does.
However, even though this optimization omits an entire all-to-all communication step, the dif-
ference is not significant (less than 8% improvement on average). This may be explained by
the fact that the size of the message sent on the one-to-all communication step initialized by
the leader is much larger than any of the all-to-all communication steps performed afterwards
(which only contains a cryptographic hash of the requests being ordered). In any case, the re-
sults for this particular experiment are inconclusive, and will be further investigated in future
work.

4.8 BFT-SMART Stability
The goal of this experiment was to observe how stable BFT-SMART’s protocol is once de-
ployed in a WAN, and to find if there is a time interval within which it is highly likely to fin-
ish ordering requests. This was done by observing the latencies experienced by distinguished

TClouds D2.2.4 Page 48 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500

 0.5

 0.9
 0.95

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Latency (miliseconds)

Read-Only
Tentative

Normal

Figure 4.4: Cumulative distribution of latencies observed in Madrid (group B).

clients. None of the optimizations evaluated in Sections 4.5-4.7 were used in this experiment.
This experiment was executed within group A over a period of approximately 600 hours. In

this experiment, replica 1 was hosted in Parma, Italy. Five clients were launched at each host,
thus making a total of 20 clients in the experiment.

Client Location Invocations Average Latency Median 90th 95th
Birmingham 717782 195 ± 144.61 172 287 436

Parma 918293 210 ± 237.81 183 280 462
Darmstadt 444054 203 ± 207.54 172 305 459

Oslo 708811 220 ± 166.16 192 293 444

Table 4.5: Average latency, standard deviation, Median, 90th and 95th percentile observed in
Group A. Values are given in milliseconds.

Table 4.5 shows the results for the average latency, standard deviation, Median, 90th and
95th percentile calculated at each distinguished client. It also discriminates the number of
invocations performed by each one of them. Figure 4.5 plots the cumulative distribution for
those latencies. During this 600-hour experiment (comprising more than 2.7M measurements),
the average latency ranged from 195 to 220 milliseconds across all sites. Even though these
averages fall in an acceptable range, their associated standard deviations are high, ranging from
144.51 to 237.81. This demonstrates that latency was quite variable during this experiment.

On the other hand, about 95% of the observed latencies fall under 462 milliseconds at all
locations. This means that latency, albeit variable, rarely exceeds 500 milliseconds. Even
though it is approximately 5 times higher than the ideal latency of 100 miliseconds identified
in [Nie93, Mil68, CRM91], clients received their response under much less than one second in
the 95th percentile (which according to the same studies, is still sufficient for user satisfaction).
This suggests that BFT SMR protocols can be stable enough to be used across WANs and are
able to reply to clients within a predictable time interval.

4.9 Discussion & Future Work
Out of the three optimizations evaluated, only the quorum size was shown to be effective in im-
proving the clients’s latency. Our 600-hour experiment indicated that clients experience latency

TClouds D2.2.4 Page 49 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

 0.5

 0.9
 0.95

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Latency (miliseconds)

Birmingham
Parma

Darmstadt
Oslo

Figure 4.5: Cumulative distribution of latencies of group A over the course of two weeks.

that remains within user satisfaction limits. Both optimizations tested in §4.5 and §4.7 seem to
be ineffective due to the message size sent by clients. There is one more explanation for such
lack of performance gain: a 4 kB payload is likely to cause packet fragmentation, which implies
more probability of packet loss. Since we use TCP connections, the packets are retransmitted,
but the remaining ones may get hold in TCP buffers. Given that we are working within a WAN,
this is a possible explanation for these results. In the future we plan to repeat these experiments
using 1 kB of payload in client messages.

4.10 Conclusion
In this chapter we have reported preliminary results from experiments conducted in Planet-
Lab executing a state machine replication protocol capable of withstanding Byzantine faults.
These experiments were meant to find how would a standard BFT SMR protocol benefit from
optimizations taken from the literature, and to learn how it would perform over a WAN environ-
ment. Albeit further work is necessary, these results indicate that out of the three optimizations
evaluated, using smaller quorums is the one that yields best performance enhancement. Using
a rotating leader scheme does not seem to bring any benefit, and it is inconclusive whether or
not removing communication steps improves performance. Finally, we showed that a standard
BFT SMR protocol can display sufficiently predictable and acceptable latency in a WAN, which
shows evidence that the cloud-of-clouds paradigm can be used in practice.

TClouds D2.2.4 Page 50 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Chapter 5

FITCH: Supporting Adaptive Replicated Ser-
vices in the Cloud

Chapter Authors:
Vinı́cius Cogo, André Nogueira, João Sousa and Alysson Bessani (FFCUL).

5.1 Introduction

Dynamic resource provisioning is one of the most significant advantages of cloud computing.
Elasticity is the property of adapting the amount and capacity of resources, which makes it pos-
sible to optimize performance and minimize costs under highly variable demands. While there
is widespread support for dynamic resource provisioning in cloud management infrastructures,
adequate support is generally missing for service replication, in particular for systems based on
state machine replication [CL02, Sch90].

Replication infrastructures typically use a static configuration of replicas. While this is ad-
equate for replicas hosted on dedicated servers, the deployment of replicas on cloud providers
creates novel opportunities. Replicated services can benefit from dynamic adaptation as replica
instances can be added or removed dynamically, the size and capacity of the resources avail-
able to replicas can be changed, and replica instances may be migrated or replaced by different
instances. These operations can lead to benefits such as increased performance, increased secu-
rity, reduced costs, and improved legal conformity. Managing cloud resources for a replication
group creates additional requirements for resource management and demands a coherent coor-
dination of adaptations with the replication mechanism.

In this chapter we present FITCH (Fault- and Intrusion-Tolerant Cloud computing Hard-
pan), a novel infrastructure to support dynamic adaptation of replicated services in cloud envi-
ronments. FITCH aggregates several components found in cloud infrastructures and some new
ones in a hybrid architecture [Ver02] that supports fundamental operations required for adapt-
ing replicated services considering dependability, performance and cost requirements. A key
characteristic of this architecture is that it can be easily deployed in current data centres [HB09]
and cloud platforms.

We validate FITCH with two representative replicated services: a crash-tolerant web service
providing static content and a Byzantine fault-tolerant (BFT) key-value store based on state
machine replication (using BFT-SMART). When deployed in our FITCH infrastructure, we
were able to easily extend both services for improved dependability through proactive recov-
ery [CL02, SNV05] and rejuvenation [HKKF95] with minimal overhead. Moreover, we also
show that both services can reconfigure and adapt to varying workloads, through horizontal
(adding/removing replicas) and vertical (upgrading/downgrading replicas) scalability.

FITCH fills a gap between works that propose either (a) protocols for reconfiguring repli-

TClouds D2.2.4 Page 51 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

cated services [LMZ10b,LAB+06] or (b) techniques for deciding when and how much to adapt
a service based on its observed workload and predefined SLA [BAP07, DPC10, Gar04]. Our
work defines a system architecture that can receive adaptation commands provided by (b) and
leverages cloud computing flexibility in providing resources by orchestrating the required re-
configuration actions. FITCH provides a basic interface for adding, removing and replacing
replicas, coordinating all low level actions mentioned providing end-to-end service adaptabil-
ity. The main contributions of this chapter are:

• A systematic analysis of the motivations and technical solutions for dynamic adaptation
of replicated services deployed the cloud (§5.2);

• The FITCH architecture, which provides generic support for dynamic adaptation of repli-
cated services running in cloud environments (§5.3 and §5.4);

• An experimental demonstration that efficient dynamic adaptation of replicated services
can be easily achieved with FITCH for two representative services and the implementa-
tion of proactive recovery, and horizontal and vertical scalability (§5.5).

5.2 Adapting Cloud Services
We review several technical solutions regarding dynamic service adaptation and correlate them
with motivations to adapt found in production systems, which we want to satisfy with FITCH.

Horizontal scalability is the ability of increasing or reducing the number of computing
instances responsible for providing a service. An increase – scale-out – is an action to deal with
peaks of client requests and to increase the number of faults the system can tolerate. A decrease
– scale-in – can save resources and money. Vertical scalability is achieved through upgrade
and downgrade procedures that respectively increase and reduce the size or capacity of re-
sources allocated to service instances (e.g., Amazon EC2 offers predefined categories for VMs
– small, medium, large, and extra large – that differ in CPU and memory resources [Ama06]).
Upgrades – scale-up – can improve service capacity while maintaining the number of replicas.
Downgrades – scale-down – can release over-provisioned allocated resources and save money.

Moving replicas to different cloud providers can result in performance improvements
due to different resource configurations, or financial gains due to different prices and policies
on billing services, and is beneficial to prevent vendor lock-in [BCQ+11]. Moving service
instances close to clients can bring relevant performance benefits. More specifically, logical
proximity to the clients can reduce service access latency. Moving replicas logically away
from attackers can increase the network latency experienced by the attacker, reducing the
impact of its attacks on the number of requests processed (this can be especially efficient for
denial-of-service attacks).

Replacing faulty replicas (crashed, buggy or compromised) is a reactive process following
fault detections, which replaces faulty instances by new, correct ones [SBC+10]. It decreases
the costs for the service owner, since he still has to pay for faulty replicas, removing also a po-
tential performance degradation caused by them, and restores the service fault tolerance. Soft-
ware replacement is an operation where software such as operating systems and web servers
are replaced in all service instances at run-time. Different implementations might differ on
performance aspects, licensing costs or security mechanisms. Software update is the process
of replacing software in all replicas by up-to-date versions. Vulnerable software, for instance,
must be replaced as soon as patches are available. New software versions may also increase

TClouds D2.2.4 Page 52 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

performance by introducing optimized algorithms. In systems running for long periods, long
running effects can cause performance degradation. Software rejuvenation can be employed to
avoid such ageing problems [HKKF95].

5.3 The FITCH Architecture

In this section, we present the architecture of the FITCH infrastructure for replicated services
adaptation.

5.3.1 System and Threat Models

Our system model considers a usual cloud-based Infrastructure-as-a-Service (IaaS) with a large
pool of physical machines hosting user-created virtual machines (VMs) and some trusted in-
frastructure for controlling the cloud resources [HB09]. We assume a hybrid distributed system
model [Ver02], in which different components of the system follow different fault and syn-
chrony models. Each machine that hosts VMs may fail arbitrarily, but it is equipped with a
trusted subsystem that can fail only by crashing (i.e., cannot be intruded or corrupted). Some
machines used to control the infrastructure are trusted and can only fail by crashing. In addition,
the network interconnecting the system is split into two isolated networks, here referred to as
data plane and control plane.

User VMs employ the data plane to communicate internally and externally with the inter-
net. All components connected to this network are untrusted, i.e., can be subject to Byzantine
faults [CL02] (except the service gateway, see §5.3.3). We assume this network and the user
VMs follow a partially synchronous system model [DLS88]. The control plane connects all
trusted components in the system. Moreover, we assume that this network and the trusted com-
ponents follow a synchronous system model with bounded computations and communications.
Notice that although clouds do not employ real-time software and hardware, in practice the
over provision of the control network associated with the use of dedicated machines, together
with over provisioned VMs running with high priorities, makes the control plane a “de facto”
synchronous system (assuming sufficiently large time bounds) [RK07, SBC+10].

5.3.2 Service Model

FITCH supports replicated services running on the untrusted domain (as user VMs) that may
follow different replication strategies. In this chapter we focus on two extremes of a large
spectrum of replication solutions.

The first extreme is represented by stateless services in which the replicas rely on a shared
storage component (e.g., a database) to store their state. Notice that these services do have
a state, but they do not need to maintain it coherently. Service replicas can process requests
without contacting other replicas. A server can fetch the state from the shared storage after
recovering from a failure, and resume processing. Classical examples of stateless replicated
services are web server clusters in which requests are distributed following a load balancing
policy, and the content served is fetched from a shared distributed file system.

The other extreme is represented by consistent stateful services in which the replicas coor-
dinate request execution following the state machine replication model [CL02, Sch90]. In this
model, an arbitrary number of client processes issue commands to a set of replica processes.

TClouds D2.2.4 Page 53 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

These replicas implement a stateful service that changes its state after processing client com-
mands, and sends replies to the issuing clients. All replicas have to execute the same sequence
of commands, which requires the use of an agreement protocol to establish a total order before
request execution. The Paxos-based coordination and storage systems used by Google [CGR07]
are examples of services that follow this model.

One can fit most popular replication models between these two extreme choices, such as
the ones providing eventual consistency, used, for example, in Amazon’s Dynamo [DHJ+07].
Moreover, the strategies we consider can be used together to create a dependable multi-tier
architecture. Its clients connect to a stateless tier (e.g., web servers) that executes operations
and, when persistent state access is required, they access a stateful tier (e.g., database or file
system) to read or modify the state.

5.3.3 Architecture
The FITCH architecture, as shown in Fig. 5.1, comprises two subsystems, one for controlling
the infrastructure and one for client service provisioning. All components are connected either
with the control plane or the data plane. In the following we describe the main architectural
components deployed on these domains.

Figure 5.1: The FITCH architecture.

The trusted domain contains the components used to control the infrastructure. The core of
our architecture is the adaptation manager, a component responsible to perform the requested
dynamic adaptations in the cloud-hosted replicated services. This component is capable of in-
serting, removing and replacing replicas of a service running over FITCH. It provides public
interfaces to be used by the adaptation heuristic. Such heuristic defines when and plans how
adaptations must be performed, and is determined by human administrators, reactive decision
engines, security information event managers and other systems that may demand some dy-
namic adaptation on services.

The service gateway maintains the group membership of each service and supports plug-
gable functionalities such as proxy and load balancing. It works like a lookup service, where
new clients and instances request the most up-to-date group of replicas of a given service
through the data plane. The adaptation manager informs the service gateway about each mod-
ification in the service membership through the control plane. The service gateway thus is a
special component connected to both networks. This is a reasonable assumption as all state

TClouds D2.2.4 Page 54 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

updates happen via the trusted control plane, whereas clients have read-only access. Moreover,
having a trusted point of contact for fetching membership data is a common assumption in
dynamic distributed systems [LMZ10b].

Cloud resource managers (RM) provide resource allocation capabilities based on requests
from the adaptation manager in order to deploy or destroy service replicas. The adaptation man-
ager provides information about the amount of resources to be allocated for a specific service
instance and the VM image that contains all required software for the new replica. The cloud
RM chooses the best combination of resources for that instance based on requested properties.
This component belongs to the trusted domain, and the control plane carries out all communi-
cation involving the cloud RM.

The deployment agent is a small trusted component, located inside cloud physical hosts,
which is responsible to guarantee the deployment of service instances. It belongs to the trusted
domain and receives deployment requests from cloud RM through the control plane. The ex-
istence of this component follows the paradigm of hybrid nodes [Ver02], previously used in
several other works (e.g., [DPSP+11, RK07, SNV05, SBC+10]).

The untrusted domain contains the components that provide the adaptive replicated ser-
vice. Application servers are virtual machines used to provide the replicated services deployed
on the cloud. Each of these user-created VMs contains all software needed by its service replica.
Servers receive, process and answer client requests directly or through the service gateway de-
pending on the configuration employed.

Cloud physical hosts are physical machines that support a virtualization environment for
server consolidation. These components host VMs containing the replicas of services running
over FITCH. They contain a hypervisor that controls the local resources and provides strong
isolation between hosted VMs. A cloud RM orchestrates such environment through the control
plane.

Application clients are processes that perform requests to service instances in order to in-
teract with the replicated service. They connect to the service gateway component to discover
the list of available replicas for a given service (and later access them directly) or send requests
directly to the service gateway, which will forward them to the respective service instances.
The application clients can be located anywhere in the internet. They belong to the untrusted
domain and communicate with the application servers and gateway through the data plane.

5.3.4 Service Adaptation
The FITCH architecture described in the previous section supports adaptation on deployed
replicated services as long as the adaptation manager, the gateway and some cloud resource
managers are available. This means that during unavailability of these components (due to an
unexpected crash, for instance), the replicated service can still be available, but adaptation op-
erations are not. Since these services are deployed on a trusted and synchronous subsystem, it
is relatively simple to implement fault tolerance for them, even transparently using VM-based
technology [CLM+08].

The FITCH infrastructure supports three basic adaptation operations for a replicated service:
add, remove and replace a replica. All adaptation solutions defined in §5.2 can be implemented
by using these three operations. When the request to adapt some service arrives at the adaptation
manager, it triggers the following sequence of operations (we assume a single replica is changed,
for simplicity):

1. If adding or replacing:

TClouds D2.2.4 Page 55 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

1.1. The adaptation manager contacts the cloud RM responsible for the physical host that matches the re-
quested criteria for the new replica. The cloud RM informs the deployment agent on the chosen physical
host asking it to create a new VM with a given image (containing the new replica software). When the
VM is launched, and the replica process is started, the deployment agent informs the cloud RM, which
informs the adaptation manager that a new replica is ready to be added to the service.

1.2. The adaptation manager informs the gateway that it needs to reconfigure the replicated service to add the
newly created replica for the service. The gateway invokes a reconfiguration command on the service
to add the new replica.1 When the reconfiguration completes, the gateway updates the current group
membership information of the service.

2. If removing or replacing:

2.1. The adaptation manager informs the gateway that it needs to reconfigure the replicated service to remove
a service replica. The gateway invokes a reconfiguration command on the service to remove the old
replica.1 When the reconfiguration completes, the gateway updates the group membership of the service.

2.2. The adaptation manager contacts the cloud RM responsible for the replica being removed or replaced.
The cloud RM asks the deployment agent of the physical host in which the replica is running to destroy
the corresponding VM. At the end of this operation, the cloud RM is informed and then it passes this
information to the adaptation manager.

Notice that, for a replica replacement, the membership needs to be updated twice, first adding
the new replica and then removing the old one. We intentionally use this two-step approach for
all replacements, because it simplifies the architecture and is necessary to guarantee services’
liveness and fault tolerance.

5.4 Implementation
We implemented the FITCH architecture and two representative services to validate it. The
services are a crash fault-tolerant (CFT) web service and a consistent BFT key-value store.
FITCH. Cloud resource managers are the components responsible for deploying and destroying
service VMs, following requests from the adaptation manager. Our prototype uses OpenNebula,
an open source system for managing virtual storage, network and processing resources in cloud
environments. We decided to use Xen as a virtualization environment that controls the physical
resources of the service replicas. The deployment agent is implemented as a set of scripts that
runs on a separated privileged VM, which has no interface with the untrusted domain.

A service gateway maintains information about the service group. In the stateless service,
the service gateway is a load balancer based on Linux Virtual Server [Zha00], which redirects
client requests to application servers. In our stateful service implementation, an Apache Tomcat
web server provides a basic service lookup.

Our adaptation manager is a Java application that processes adaptation requests and commu-
nicates with cloud RMs and the service gateway to address those requests. The communication
between the adaptation manager and cloud resource managers is done through OpenNebula
API for Java. Additionally, the communication between the adaptation manager and the service
gateway is done through secure sockets (SSL).

In our implementation, each application server is a virtual machine running Linux. All
software needed to run the service is present in the VM image deployed at each service instance.
Different VLANs, in a Gigabit Ethernet switch, isolate data and control planes.

1The specific command depends on the replication technique and middleware being used by the service.
We assume that the replication middleware implements a mechanism that ensures a consistent reconfiguration
(e.g., [LMZ10b, LAB+06]).

TClouds D2.2.4 Page 56 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Stateless service. In the replicated stateless web service, each client request is processed inde-
pendently, unrelated to any other requests previously sent to any replica. It is composed of some
number of replicas, which have exactly the same service implementation, and are orchestrated
by a load balancer in the service gateway, which forwards clients requests to be processed by
one of the replicas.

Stateful service. In the key-value store based on BFT state machine replication [CL02], each
request is processed in parallel by all service replicas and a correct answer is obtained by vot-
ing on replicas replies. To obtain such replication, we developed our key-value store over a
Byzantine state machine replication library called BFT-SMART [BSA] (see Chapter 2). Such
key-value store is basically the SCKV-store described in Chapter 3, but here configured to store
operation logs and state checkpoints in main memory. For the purpose of this report, it is enough
to know that BFT-SMART employs a leader-based total order protocol similar to PBFT [CL02]
and that it implements a reconfiguration protocol following the ideas presented by Lamport et
al. [LMZ10b].

Adaptations. We implemented three adaptation solutions using the FITCH infrastructure. Both
services employ proactive recovery [CL02, SNV05] by periodically replacing a replica by a
new and correct instance. This approach allows a fault-tolerant system to tolerate an arbitrary
number of faults in the entire service life span. The window of vulnerability in which faults
in more than f replicas can disrupt a service is reduced to the time it takes all hosts to finish a
recovery round. We use horizontal scalability (adding and removing replicas) for the stateless
service, and we analyse vertical scalability (upgrading and downgrading the replicas) of the
stateful service.

5.5 Experimental Evaluation

We evaluate our implementation in order to quantify the benefits and the impact caused by
employing dynamic adaptation in replicated services running in cloud environments. We first
present the experimental environment and tools, followed by experiments to measure the impact
of proactive recovery, and horizontal and vertical scalability.

5.5.1 Experimental Environment and Tools

Our experimental environment uses 17 physical machines that host all FITCH components (see
Table 5.1). This cloud environment provides three types of virtual machines – small (1 CPU,
2GB RAM), medium (2 CPU, 4GB RAM) or large (4 CPU, 8GB RAM). Our experiments
use two benchmarks. The stateless service is evaluated using the WS-Test [Sun04] web ser-
vices microbenchmark. We executed the echoList application within this benchmark, which
sends and receives linked lists of twenty 1KB elements. The stateful service is evaluated us-
ing YCSB [CST+10], a benchmark for cloud-serving data stores. We implemented a wrapper
to translate YCSB calls to requests in our BFT key-value store and used three workloads: a
read-heavy workload (95% of GET and 5% of PUT [CST+10]), a pure-read (100% GET) and
a pure-write workload (100% PUT). We used OpenNebula version 2.0.1, Xen 3.2-1, Apache
Tomcat 6.0.35 and VM images with Linux Ubuntu Intrepid and kernel version 2.6.27-7-server
for x86 64 architectures.

TClouds D2.2.4 Page 57 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Figure 5.2: Impact on a CFT stateless service. Note that the y-axis is in logarithmic scale.

5.5.2 Proactive Recovery

Our first experiment consists in replacing the entire set of service replicas as if implementing
software rejuvenation or proactive/reactive recovery [CL02, HKKF95, RK07, SBC+10]. The
former is important to avoid software ageing problems, whereas the latter enforces service’s
fault tolerance properties (for instance, the ability to tolerate f faults) [SNV05].

The idea of this experiment is to recover all n replicas from the service group, one-by-
one, as early as possible, without disrupting the service availability (i.e., maintaining n − f
active replicas). Each recovery consists of creating and adding a new replica to the group and
removing an old replica from it. We perform n recoveries per experiment, where n is the number
of service replicas, which depends on the type and number of faults to be tolerated, and on the
protocol used to replace all replicas. The time needed to completely recover a replica can also
vary for each reconfiguration protocol.

Impact on a CFT stateless web service. Our first application in this experiment is a stateless web
service that is initially composed of 4 large (L) replicas (which can tolerate 3 crash faults). The
resulting latencies (in ms) are presented in Fig. 5.2, with and without the recovering operations
in an experiment that took 400 s to finish. In this graph, each replica recovery is marked with a
“R” symbol and has two lines representing the beginning and the end of replacements, respec-
tively. The average of service latency without recovery was 5.60 ms, whereas with recovery was
8.96 ms. This means that the overall difference in the execution with and without recoveries
is equivalent to 60% (represented in the filled area of Fig. 5.2). However, such difference is
mostly caused during replacements, which only happens during 7.6% of the execution time.

We draw attention to three aspects of the graph. First, the service has an initial warm-up
phase that is independent of the recovery mechanism, and the inserted replica will also endure
such phase. This warm-up phase occurs during the first 30 s of the experiment as presented
in Fig. 5.2. Second, only a small interval is needed between insertions and removals, since

Component Qty. Description Component Qty. Description

Adaptation Manager 1 Dell PowerEdge 850 Client (YCSB) 1 Dell PowerEdge R410
Intel Pentium 4 CPU 2.80GHz Intel Xeon E5520

Client (WS-Test) 5
1 single-core, HT

Service Gateway 1
2 quad-core, HT

2.8 GHz / 1 MB L2 2.27 GHz / 1 MB L2 / 8 MB L3
2 GB RAM / DIMM 533MHz 32 GB / DIMM 1066 MHz

Cloud RM 3 2 x Gigabit Eth. Physical Cloud Host 6 2 x Gigabit Eth.
Hard disk 80 GB / SCSI Hard disk 146 GB / SCSI

Table 5.1: Hardware environment.

TClouds D2.2.4 Page 58 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

the service reconfigures quickly. Third, the service latency increases 20- to 30-fold during
recoveries, but throughput (operations/s) never falls to zero.
Impact on a BFT stateful key-value store. Our second test considers a BFT key-value store
based on state machine replication. The service group is also composed of 4 large replicas, but
it tolerates only 1 arbitrary fault, respecting the 3f + 1 minimum required by BFT-SMART.
Fig. 5.3 shows the resulting latencies with and without recovery, regarding (a) PUT and (b) GET
operations. The entire experiment took 800 s to finish.

(a) PUT operations (b) GET operations

Figure 5.3: Impact on a BFT stateful key-value store. Note that the y-axis is in logarithmic
scale.

We are able to show the impact of a recovery round on service latency by keeping the rate
of requests constant at 1000 operations/s. In this graph, each replica recovery is divided into the
insertion of a new replica (marked with “+R”) and the removal of an old replica (marked with
“-R”). Removing the group leader is marked with “-L”. The average latency of PUT operations
without recovery was 3.69 ms, whereas with recovery it was 4.15 ms (a difference of 12.52%).
Regarding GET operations, the average latency without recovery was 0.79 ms, whereas with
recovery was 0.82 ms (a difference of 3.33%).

We draw attention to six aspects of these results. First, the service in question also goes
through a warm-up phase during the first 45 s of the experiment. Second, the service needs a
bigger interval between insertion and removal than the previous case because a state transfer
occurs when inserting a new replica. Third, the service loses almost one third of its capacity
on each insertion, which takes more time than in the stateless case. Fourth, the service stops
processing during a few seconds (starting at 760 s in Fig. 6.5(a)) when the leader leaves the
group. This unavailability while electing a new leader cannot be avoided, since the system is
unable to order requests during leader changes. Fifth, client requests sent during this period
are queued and answered as soon as the new leader is elected. Finally, GET operations do not
suffer the same impact on recovering replicas as PUT operations do because GET operations
are executed without being totally ordered across replicas, whereas PUT operations are ordered
by BFT-SMART protocol.

5.5.3 Scale-out and Scale-in
Horizontal scalability is the ability of increasing or reducing the number of service instances to
follow demands of clients. In this experiment, we insert and remove replicas from a stateless
service group to adapt the service capacity. The resulting latencies are presented in Fig. 5.4.
The entire experiment took 1800 s to finish, and the stateless service processed almost 4 million

TClouds D2.2.4 Page 59 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Figure 5.4: Horizontal scalability test.

client requests, resulting in an average of 2220 operations/s. Each adaptation is either composed
of a replica insertion (“+R”) or removal (“-R”).

Since all replicas are identical, we consider that each replica insertion/removal in the group
can theoretically improve/reduce the service throughput by 1/n, where n is the number of
replicas running the service before the adaptation request.

The service group was initially composed of 2 small (S) replicas, which means a capacity of
processing 1500 operations/s. Near the 100 s mark, the first adaptation was performed, a replica
insertion, which decreased the service latency from 30 ms to 18 ms. Other replica insertions
were performed near the 400 s and 700 s marks, increasing the service group to 4, and to 5
replicas, and decreasing the service latency to 13 ms, and to 10 ms, respectively. The service
achieved its peak performance with 5 replicas near the 900 s mark, and started decreasing the
number of replicas with removals near the 1000 s, 1240 s and 1480 s, until when increases the
service latency to 25 ms using 2 replicas.

Dynamically adapting the number of replicas can be performed reactively. A comparison
between the service capacity and the current rate of client requests can determine if the service
needs more or fewer replicas. In case of large differences, the system could insert or remove
multiple replicas in the same adaptation request. Such rapid elasticity can adapt better to large
peaks and troughs of client requests. We maintained the client request rate above the service
capacity to obtain the highest number of processed operations on each second.

The entire experiment would cost $0.200 on Amazon EC2 [Ama06] considering a static
approach (using 5 small replicas), while with the dynamic approach it would cost $0.136. Thus,
if this workload is repeated continuously, the dynamic approach could provide a monetary gain
of 53%, which is equivalent to $1120 per year.

5.5.4 Scale-up and Scale-down

Vertical scalability is achieved through upgrade and downgrade procedures to adjust the service
capacity to client’s demands. It avoids the disadvantages of increasing the number of repli-
cas [AEMGG+05b], since it maintains the number of replicas after a service adaptation.

In this experiment, we scale-up and -down the replicas of our BFT key-value store, during
8000 s. Each upgrade or downgrade operation is composed of 4 replica replacements in a
chain. The service group comprises 4 initially small replicas (4S mark). Fig. 5.5 shows the
resulting latencies during the entire experiment, where each “Upgrading” and “Downgrading”
mark indicates a scale-up and scale-down, respectively. We also present on top of this figure

TClouds D2.2.4 Page 60 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Figure 5.5: Vertical scalability test. Note that y-axis is in logarithmic scale.

the “(4S)”, “(4M)” and “(4L)” marks, indicating the quantity and type of VMs used on the
entire service group between the previous and the next marks, as well as the average latency
and number of operations per second that each configuration is able to process.

The first adaptation was an upgrade from small (S) to medium (M) VMs, which reduced
PUT latency from near 6 ms to 4 ms and GET latency from almost 0.9 ms to 0.82 ms. The
second round was an upgrade to large (L) VMs. This reduced the PUT latency from 4 ms to
3.5 ms and the GET latency from 0.82 ms to 0.75 ms. Later, we performed downgrades to the
service (from large to medium and from medium to small), which reduced the performance and
increased the PUT latency to almost 5 ms and the GET latency to 0.87 ms.

The entire experiment would cost $2.84 on Amazon EC2 [Ama06] considering the static
approach (using 4 large replicas), while the dynamic approach would cost $1.68. This can be
translated into an economical gain of 32%, the equivalent to $4559 per year.

5.6 Related Work

Dynamic resource provisioning is a core functionality in cloud environments. Previous work [BGC11]
has studied the basic mechanisms to provide resources given a set of SLAs that define the user’s
requirements. In our work, cloud managers provide resources based on requests sent by the
adaptation manager, for allocating and releasing resources.

The adaptation manager is responsible for performing dynamic adaptations in arbitrary ser-
vice components. These adaptations are defined by an adaptation heuristic. There are sev-
eral proposals for this kind of component [BAP07, DPC10, Gar04], which normally follow the
“monitor-analyse-plan-execute” adaptation loop [KC03]. Their focus is mostly on preparing
decision heuristics, not on executing the dynamic adaptations. Such heuristics are based mainly
on performance aspects, whereas our work is concerned with performance and dependability
aspects. One of our main goals is to maintain the service trustworthiness level during the entire
mission time, even in the presence of faults. As none of the aforementioned papers were con-
cerned with economy aspects, none of them releases or migrate over-provisioned resources to
save money [YAK11].

Regarding the results presented in these works, only Rainbow [Gar04] demonstrates the
throughput of a stateless web service running over their adaptation system. However, it does
not discuss the impact caused by adaptations in the service provisioning. In our evaluation,
we demonstrate the impact of replacing an entire group of service replicas, in a stateless web

TClouds D2.2.4 Page 61 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

service, and additionally, in a stateful BFT key-value store.
Regarding the execution step of dynamic adaptation, only Dynaco [BAP07] describes the

resource allocation process and executes it using grid resource managers. FITCH is prepared
to allow the execution of dynamic adaptations using multiple cloud resource managers. As
adaptation heuristics is not the focus of this chapter, we discussed some reactive opportunities,
but implemented only time-based proactive heuristics. In the same way, proactive recovery is
essential in order to maintain availability of replicated systems in the presence of faults [CL02,
DPSP+11, RK07, SNV05, SBC+10]. An important difference to our work is that these systems
do not consider the opportunities for dynamic management and elasticity as given in cloud
environments.

Dynamic reconfiguration has been considered in previous work on group communication
systems [CHS01] and reconfigurable replicated state machines [LMZ10b, LAB+06]. These
approaches are orthogonal to our contribution, which is a system architecture that allows taking
advantage of a dynamic cloud infrastructure for such reconfigurations.

5.7 Conclusions
Replicated services do not take advantage from the dynamism of cloud resource provisioning
to adapt to real-world changing conditions. However, there are opportunities to improve these
services in terms of performance, dependability and cost-efficiency if such cloud capabilities
are used.

In this chapter, we described and evaluated FITCH, a novel infrastructure to support the
dynamic adaptation of replicated services in cloud environments. Our architecture is based on
well-understood architectural principles [Ver02] and can be implemented in current data centre
architectures [HB09] and cloud platforms with minimal changes. The three basic adaptation
operations supported by FITCH – add, remove and replace a replica – were enough to perform
all adaptation of interest.

We validated FITCH by implementing two representative services: a crash fault-tolerant
web service and a BFT key-value store. We show that it is possible to augment the depend-
ability of such services through proactive recovery with minimal impact on their performance.
Moreover, the use of FITCH allows both services to adapt to different workloads through scale-
up/down and scale-out/in techniques.

TClouds D2.2.4 Page 62 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Chapter 6

A Byzantine Fault-Tolerant Transactional
Database

Chapter Authors:
Marcel Santos and Alysson Bessani (FFCUL).

6.1 Introduction

The purpose and functionality of most computer systems is the storage and manipulation of in-
formation. A wide variety of systems like business applications, health care providers, financial
and government institutions uses computer systems to store and access information.

To manage data and provide access to information, database systems were created decades
ago. Database management systems (DBMS) are systems that manage and provide tools to
access data. There are lots of database vendors that provide DBMS. Aspects like data integrity,
availability and performance can vary from vendor to vendor.

Database vendors may provide mechanisms like replication and periodic backups to secure
data but these mechanisms may not prevent data loss or corruption. Threats like software bugs,
hardware failures and intrusions can modify data or cause loss of data before it is securely stored
in durable media. Even after data is stored, it can yet be corrupted or lost.

To address resilience in database systems an alternative is to use active replication. In sum-
mary, data is forwarded to several databases and only when a predefined number of participants
confirm the result of the operation the result is returned to the client.

State machine replication [CL02] (SMR) is a fault tolerance protocol for active replication.
It assumes that data is replicated across several participants, called replicas. The replicas start
with the same state and execute operations that change the application state in the same order.
Operations are ordered through a sequence of messages exchanged between replicas. The sys-
tem will have a consistent state even in the presence of a predefined number of faulty replicas.
SMR can be implemented to tolerate Byzantine faults using 3f + 1 replicas to tolerate f faults.
In this case, a replica can be faulty not only due to crash or delay to process the requests, but
also due to software and hardware bugs that make it return arbitrary results and corrupt its state.

Our goal is to provide a database replication middleware - SteelDB - that works on top of
BFT-SMART [BSA], a Byzantine Fault Tolerant SMR protocol. This middleware provides
resilience in the presence of faulty replicas. Some of the ideas used in SteelDB were defined by
Byzantium [GRP11], a database replication middleware built on top of PBFT [CL02], the first
efficient BFT-SMR protocol.

TClouds D2.2.4 Page 63 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

6.2 Byzantium
Byzantium is a database replication middleware tolerant to Byzantine faults. It uses PBFT as
the replication library and requires 3f + 1 replicas to tolerate f faults. Byzantium architecture
is presented in figure 6.1.

Figure 6.1: The Byzantium architecture.

The state machine replication protocol requires that messages which change the state of the
application to be totally ordered across replicas.

Byzantium considers all operations executed against databases to run inside transactions.
Transactions are group of operations that holds ACID properties (atomicity, consistency, isola-
tion and durability). When using transactions, the state of the database is persisted only when
the transaction is confirmed, a process called commit.

To increase concurrent execution of transactions, Byzantium assumes that DBMS imple-
mentation provides snapshot isolation. Snapshot isolation, also known as multi version concur-
rency control is a technique to control concurrent access to data without the use of table locks.
Version numbers are assigned to data objects when they are read or modified. Before commit
the database manager verifies if the version of the object being written is the same version as
when it was opened.

Transactions in Byzantium are flagged as read-write or read-only. By the time a transaction
is created it is considered read-only. Transactions will be promoted to read-write only when the
first write message is received.

To reduce the cost of replication, operations received in read-only transactions are sent only
to f + 1 replicas. The Byzantium client will wait for f replies before return the result to the
client. If the remaining replies doesn’t match the f received the protocol will try to execute the
operations in the other replicas to validate the result.

Operations that occur in a read-write transaction are sent to all replicas but only executed
in one of them, called master. This way the client won’t need to wait for a reply quorum to
confirm the operation. During the processing of a transaction, the client will keep a list of
operations sent and results returned by the master replica. By the time of commit the client
will request a commit and will send the list of operations and results. The replicas then will
verify if the operations match. If operations matches, the replicas will execute all operations
and compare the results with results informed from the master. If results match the commit will

TClouds D2.2.4 Page 64 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

be confirmed. Otherwise, the transaction will be rolled back and the client will be informed, so
that it can proceed with a suspect master operation.

Byzantium defines also a suspect master protocol to change a faulty master due to crash
or Byzantine behavior. When a client notices that the master returned incorrect results or took
longer than a predefined timeout to return results, it will send a suspect master message to the
replicas. The replicas will try then to confirm with the master if it received the messages from
the client. In the case of no success, the replicas will define the replica with the next id as the
master and will inform the client about the new master. Open transactions will be rolled back
and the clients will be informed about the rollback.

Byzantium defines two versions of the protocol, called single-master and multi-master. In
the single-master version, all transactions considers the same replica to be the master. In the
multi-master protocol, at the beginning of a transaction one of the replicas is randomly selected
to be the master replica. In that case, each transaction will have a master and this master can be
different from other transactions. The single-master performs better in a read-write dominated
workload while the multi-master version performs better in a read-only dominated workload.

6.3 SteelDB

To provide resilience for the database layer of work package 3.2 we developed SteelDB, a
middleware to replicate data across multiple replicas, assuming that a predefined number of
replicas can be faulty. SteelDB is a JDBC implementation that requires no changes in client
implementation to be used. It also borrows some ideas from Byzantium like the optimistic
execution of transactions on master replicas and master change protocol. We have implemented
only the single-master protocol of Byzantium. The use case by work package 3.2 assumes
that clients are located in the same infrastructure so there will be no advantage to have several
different masters. Having a single master in a replica in the same infrastructure as the client
would yield faster response times than a master in a external cloud. Also to implement the
state transfer protocol in the presence of multiple masters would add increase the number of
scenarios to be considered and be very time consuming.

Steel DB uses BFT-SMART (see Chapter 2) as its state machine replication protocol. BFT-
SMART is an efficient state machine replication programming library that tolerates crash and
Byzantine faults. It is implemented in Java and includes several protocols like state transfer,
leader change and reconfiguration to recover from faults and increase performance on different
workloads. To have JDBC as a client of BFT-SMART and replicate data to the server repli-
cas, we had to implement BFT-SMART interfaces for clients and servers. The architecture of
SteelDB is presented in Figure 6.2.

The clients of SteelDB implement the JDBC specification to invoke operations in BFT-
SMART service proxy. We take advantage of the use of transactions to reduce the number of
messages exchanged between clients and replicas. Unlike in Byzantium, when an operation is
inside a transaction, the client will send it only to the master replica. The master will execute
the operation and return the result to the client. By the commit time the client will send the
list of operations executed and responses received during the transaction to all replicas. The
replicas will execute the operations and check the results against the results returned from the
master.

The sequence of messages executed by the replicas is presented in the Figure 6.3:

1. The replica receives an array of bytes through BFT-SMART interface.

TClouds D2.2.4 Page 65 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Figure 6.2: The SteelDB architecture.

Figure 6.3: Work-flow inside a replica.

2. The array of bytes is then transformed in a Message object. This object is understandable by
the replica, unlike the array of bytes.

3. The message is then processed by the MessageProcessor according to the kind of request.

4. If the message is a login operation, the login is executed and the connection stored in the
SessionManager.

5. SessionManager returns the connection to execute the operation.

6. When SteelDB uses DBMS from different vendors, the message has to be normalized to
allow the comparison of results from replicas.

7. The operation is executed against the JDBC interface. If this is the master replica the result
is returned to the client. If not, each operation sent with the commit message is checked
against the results from master before confirming the commit.

We will describe next the ideas presented on SteelDB and the issues we had during its
implementation.

TClouds D2.2.4 Page 66 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

6.3.1 Fifo Order
All previous services developed over BFT-SMART supported simple read, write or read-write
operations, without any support for ACID transactions. In this scenario, there was no problem
if some unordered read operation arrived out of order in f replicas. This happens because the
client expects a number of replicas to execute operations and return matching results before
sending its next operation. The problem is, with a transactional protocol, if an operation within
a transaction arrives at some replica before the transaction BEGIN (or the database connection
is established), it will be rejected, and the client may observe problems. The reason for this
problem is that BFT-SMART either considers total order requests or unordered requests, there
is no mechanism ensuring FIFO order, as required in Byzantium. To deal with this limitation
without modifying BFT-SMART we devised an ordering layer that uses application-level se-
quence numbers (defined in our JDBC driver and verified in the replica’ service) and locks to
ensure messages are processed in the order that they are sent by a client. After several tests
we discovered that this would not work without changing the internal handling of requests in
BFT-SMART.

We found that it would be easier to change the protocol to optimistically execute operations
inside transactions only in the master replica and send them to the other replicas only before
commit. This removed the requirement of execute clients messages in FIFO order.

6.3.2 JDBC specification
The transaction management in JDBC is slightly different from the way that a DBMS operates.
Usually, the sequence of steps to process a transaction in a database includes: open a connec-
tion, begin a transaction, executes the operations and commit or rollback the transaction. The
description of Byzantium algorithm follows this sequence of operations.

JDBC manages the transaction boundaries transparently. When a user opens a connection
to the database, the connection is opened in auto-commit mode. This means that all operations
will be reflected in the database immediately, without need for a commit operation. If the client
needs to create a transaction, it has to change the connection auto-commit flag to false. This
has the same effect as issuing a begin command to the database. Operations are executed in the
database and the transaction is finished by a commit or a rollback command. After a commit,
or a rollback, the auto-commit flag is not changed, which means that the connection is still not
auto-commit, so, one transaction was committed and another started. A client can also finish a
transaction by setting again the auto-commit flag to true. It will commit the current transaction
before the change.

We had to manage client operations to store the auto-commit flag for all operations. Byzan-
tium also defines that transactions shouldn’t be considered read-write before the first update
operation is issued. To implement that we needed to add another flag to each connection to
define if it has a read-only or read-write transaction. By the time a transaction is promoted to
read-write, all operations are executed only in the master replica. In the other replicas operations
are executed only before commit.

6.3.3 State transfer
State machine replication assumes that a replication system will make progress even in the
presence of up to f faulty replicas. This means that situations may occur when up to f replicas
are not in the same state of the others. Also there may be times when a replica crashes and

TClouds D2.2.4 Page 67 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

recovers after some time. As the system continues to make progress, the recovered or late
replica may not have an up to date copy of the state, so it has to ask other replicas to provide the
state. This recovery process is managed by the state transfer protocol.

Without the use of a state transfer protocol, after f replicas are compromised, the system is
vulnerable to attacks or crashes. At that point if any additional faults occur, the integrity of the
system cannot be confirmed as there is not a presence of a minimum quorum of participants to
validate operations.

The state transfer protocol is started when a replica receives a sequence of operations and
realizes that the operations sequence numbers are higher than the last it executed, or that it
didn’t execute operations at all.

The replica will send a request to other replicas asking for the application state. One replica
is defined to send the state and the others will send digests of the state. After receiving the state
and digests, the replica can compare the data to find if the state is correct. If confirmed, the
state is installed and the replica continues to process the remaining requests. The state transfer
protocol recovers a faulty replica, enabling it to process requests again. That process will reduce
the window of vulnerability of the system.

Byzantium defined an optimization where replicas would store operations to be executed
before commit. We tried to implement this protocol, but it added a lot of complexity to the state
transfer protocol. We had to manage the state of the application plus partial data that was not
stored in the database but couldn’t be ignored. This data would need to be executed in the new
replica after the state was restored.

The change that we made in the protocol to only execute operations in the master allowed us
to only transfer the state from the database of transactions that were commited. BFT-SMART

state transfer protocol defines a strategy to take copies of the application state to be transfered
to replicas that may request it during the protocol execution. This stratagy comprises the log of
all operations that changes the state of the application. To bound the size of the log data, in pre
defined periods, the application state is saved in a serialized format called checkpoint and the log
is erased. In SteelDB we ask the DBMS to generate a dump of the database information during
checkpoint periods. Together with the dump we store the information about open connections
to be restored in the new replicas. Operations are logged only during commit time.

When a recovering replica asks the state from other replicas it receives the dump of the
database together with information about connections. It can then restore the database, open the
connections and execute the logged operations to update itself to the state it received the first
request after start.

6.3.4 Master change
Byzantium defines a master change protocol. When the master replica takes more then a pre-
defined timeout to process a request, the client informs the other replicas about the presence
of a faulty master in a master change request. Together with this request, the client sends the
operations executed so far in the current transaction. When the replicas receive the request for a
master change operation, they will update its master id to the new one. The new master replica
will execute the requests informed by the client and reply with the results.

To prevent a malicious client from request several master changes, the replicas logs the
requests sents from clients. If a client try to request multiple master changes in less then a
predefined time, the requests are ignored.

After a master change, clients will not know about the new master until the execution of
the next operation. If the next operation is sent only to the old master, it will fail as the old

TClouds D2.2.4 Page 68 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

master is offline. When the client request the master change, replicas will know that the change
was already executed and the client will be informed. If instead of send a message only to the
master, the client send a message to all replicas (commit message or message in an autocommit
connection) the operation will be executed and the replicas will inform the new master together
with the reply to the client.

6.3.5 Optimizations
Byzantium defines optimizations in the protocol to increase performance in the presence of
read-only dominated workloads.

Messages executed on read-only transactions can be executed speculatively in only two
replicas and the first result is returned to client. Only by the time of commit the second result is
compared. This works when the operation is executed inside a transaction. If the connection is
a auto-commit connection, the message has yet to be validated by a quorum of replicas, as there
is no commit time to invalidate the response.

As described before, the storage of operations in replicas before commit time would increase
the complexity of the state transfer protocol of BFT-SMART. We decided to instead execute
operations only in the master replica and execute the whole transaction before commit in the
other replicas.

6.4 Evaluation
To evaluate the performance of SteelDB we used a widely known DBMS benchmarking tool,
TPC-C [tpc12]. We executed tests in different scenarios with different database configurations
and compared the results.

We first ran tests with TPC-C executing operations against a single database. In a second
step we ran TPC-C connected to SteelDB and tested data being replicated to DBMS from dif-
ferent vendors.

6.4.1 TPC-C
TPC-C is a benchmarking tool that simulates Online Transaction Processing workloads (OLTP)
workloads. OLTP refers to a class of systems which has intensive transaction processing for
writing retrieving information.

TPC-C simulates a business application to manage the creation and processing of orders
across several departments of a company. The database schema of TPC-C is displayed in figure
6.4.

The numbers in the entity blocks represent the number or rows contained in each table.
These numbers are scaled by W, which is the number of warehouses, to simulate database scal-
ing. As the number of W increases, the database will accept more clients terminals connected to
the database. For each warehouse defined, the database will accept connections from 10 client
terminals.

TPC-C defines five different type of transactions that have different workloads and operation
types:

• New-Order transaction: mid-weight read-write transaction;

• Payment transaction: light weight read-write transaction;

TClouds D2.2.4 Page 69 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Figure 6.4: TPC-C database schema.

• Order-status: mid-weight read-only transaction;

• Delivery transaction: simulates execution of ten new order transactions. It is supposed to
be executed in deferred mode, unlike the other transactions;

• Stock-level transaction: heavy weight read-only transaction.

Several benchmark users [VBLM07,GRP11] measure how many transactions per minute-C
(tpmC) the database can execute. That value represents how many New-Order transactions per
minute a system generates while the system is executing the other four transaction types. We
will use that measure in our experiments.

We couldn’t use H2 database in the tests because of incompatibility issues with TPC-C
queries. We were not able to create the tables needed by TPC-C and also could not load the data
to run the tests. Despite that, we ran the tests with different vendors to evaluate the performance
of SteelDB compared to direct access to databases.

We do not support the execution of SteelDB protocol with different database vendors. One
step of the state transfer protocol includes the request of a database dump to the DBMS. Dif-
ferent vendors provide different dialects and structures for database dump. As the state transfer
protocol requires the dumps to be equal, we would not be able to compare dumps from different
vendors. We did though implement a module to normalize queries. That module allowed us to
run the benchmark against a diverse configuration of databases.

6.4.2 Test environment
We ran TPC-C benchmarking tool against DBMS from different vendors. We used MySQL
[mys12], PostgreSQL [pos12], HSQLDB [hyp12] and FirebirdSQL [fir12] and compared the
results.

Tests were executed in a cluster of machines, each one with an Intel Xeon E5520 2.27 GHz
processor, 32GB of RAM memory, 15K RPM SCSI disk and a Gigabit Ethernet network inter-
face. Machines were running the Ubuntu 10.04 Server 64-bits operating system, with the kernel
version 2.6.32. The Java Virtual Machine used was OpenJDK Runtime Environment version
1.6.0 18. The versions of the DBMS used were MySQL 5.1, PostgreSQL 9.1, HyperSQL
2.2.8 and Firebird SuperClassic 2.5.1.

To measure transaction processing and disregard side effects as JIT compilation time we
made slight modifications to the benchmark:

TClouds D2.2.4 Page 70 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

• added a 1 minute warm-up phase before starting the performance measurements;

• allowed clients to execute on different machines (maximum of 30 clients per machine);

• added a inter-transaction arrival time of 200 ms. In other words, we added an interval of
200 ms between the execution of transactions in each connection.

We used a benchmark workload configuration equivalent to the workload used in Byzantium
experiments. The workload was composed as follows:

• 50% read transactions: with 25% for both Stock-Level and Order-Status.

• 50% write transactions: with 27% for New-Order, 21% for Payment and 2% for Delivery.

6.4.3 Test results
We first ran TPC-C benchmark against a single database with four different DBMS implemen-
tations. As we can see in Figure 6.5(a) MySQL has the best performance for the workload we
set up. We tested it with sixty clients and still didn’t get to a point where the throughput was
saturated and the latency increased. PostgreSQL and HyperSQL had similar results with a peak
throughput between ten and twenty clients, with constant values until sixty clients. Firebird had
its peak throughput with ten clients and after that the performance decreased when new clients
were introduced. We searched for the reasons for that strange behavior and we discovered that
as we increased the number of clients the DBMS access to disk also increased, crippling the
performance of the system. We decided not to spend further time on that issue, as it is not a
purpose of this work to find performance issues of a specific DBMS vendor.

(a) Standalone DBMS. (b) SteelDB variants.

Figure 6.5: TPC-C results standalone DBMS and SteelDB variants.

After run TPC-C against single databases, we changed the configuration to use SteelDB as
the database driver and have it connected to four different configurations:

• SteelDB Mysql: four instances of MySQL;

• SteelDB Postgres: four instances of PostgreSQL;

• SteelDB Diverse: four instances using different DBMS: MySQL, PostgreSQL, Hyper-
SQL and Firebird;

TClouds D2.2.4 Page 71 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

• SteelDB MySQL no interval: four instances of MySQL without the interval of 200ms
between transactions.

Results are displayed in Figure 6.5(b). We can see that the best performance was achieved
with MySQL without the interval between transactions. Even then we can notice that the
throughput is about 50% of the value obtained with the standalone execution of TPC-C. This
is justified by the operations being executed speculatively in the master replica. By the time of
commit the operations are replicated to the other replicas. The client have to wait for operations
to be executed and checked against operations executed on the master. This means that the
client will have to wait for the execution in to steps, one from the master and one from the other
replicas. The second slower replica will define the time to commit the operations, as clients will
consider only the first replies it receives, disregarding f.

6.5 Lessons learned
During implementation of SteelDB we found issues that were not expected by the time we
designed it. We will summarize now some of this issues and the lessons we learned during
development and tests.

6.5.1 Use case complexity
Until the work on SteelDB we had implemented several applications on top of BFT-SMART.
These use cases included simple key-value stores, tuple spaces and file systems. Each use
case contained its level of complexity, but all of them differs from a database in the sense that
the application was created by ourselves, with characteristics designed to address our needs.
During the implementation of SteelDB we had to define methods to receive metadata about
tables, columns and data types. We had to set databases to the same timezone to have consistent
values. We ran several tests with state transfer to find out that dumps can have queries in
different positions and therefore cannot be compared.

In summary, implementing a use case from top to bottom is less prone to surprises than
adapting an existing application to the model we had.

6.5.2 DBMS maturity
By the time we planned the replication environment, it was defined that the database to be
used would be H2 database for reasons like ease of installation and management of database
instances. As we worked in the implementation of the driver we discovered that features that H2
database provides, namely snapshot isolation were not quite the way it should be. The definition
of snapshot isolation defines that version numbers should be attributed to data to avoid the use
of locks. After analysis on documentation and forums we found out that H2 uses locks for row
with lock timeout to manage the concurrent execution of updates. We had then to change our
tests so that we not had two different clients changing the same row.

We also needed to make dumps of the database to be used in state transfer. We found out that
the dump tools provided didn’t include options to have table structures in the dump. MySQL
for instance has a large set of options that can be used when taking a dump. It is even possible
to include queries to modify data when taking a dump.

When choosing between database vendors, features like ease of use, complexity of manage-
ment of databases and language are important. But it is also important to check how mature a

TClouds D2.2.4 Page 72 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

DBMS is. Some of the functionality needed may not be available yet. And even some that are
claimed to exist may not be implemented as they were defined.

6.5.3 Database specific issues
Databases have mechanisms to transfer the state from one database to another. Most or all
database vendors provide dump operations to generate text files with structure and data of the
whole database in sequences of queries that can be executed in the new database to restore the
state. Although it is a common functionality in database systems, the idiom in which the data
is written in the dump files can differ from vendor to vendor. The differences in the structured
query language from one database vendor to another are referred to as database dialects. As we
use dumps and hashes of data to compare queries results, even a single character that differs
from a data set to another can invalidate the results, even if they are equivalent. Because of
that, it is impossible to use DBMS from different vendors using the middleware we created. To
fix that we would need to extend the normalizer to translate every result from databases to a
common dialect. That work would require a lot of effort as there are a huge number of database
vendors and the differences among dialects are quite extensive.

Another problem we found was database specific behaviors regarded field types. We had
problems with date values that were written in the database and when queried, different replicas
returned different results. After days of tests with queries we found out that the database driver
we used considers the timezone in which a database is based. Depending on the timezone, the
database changed data to reflect the differences between timezones. We couldn’t then validate
the results. Only when we forced the databases to operate in the same timezone we were able
to obtain consistent results.

6.6 Final remarks
The work to implement a client of BFT-SMART to replicate data across multiple database
instances was more complex than we thought at first. Databases have several features designed
over decades to attend to patterns, clients needs and compatibility with legacy systems. These
features make such use case complex to be implemented in its full potential. We chose to
implement features that were needed by the use cases we had on work package 3.2.

The tests on SteelDB were complex because the use case comprises the large set of scenarios
with multiple clients creating transactions, executing queries and comparing results. The tests
would not be possible without the help from our partners from work package 3.2, who provided
us several test suites to validate the operation of the protocol.

Despite the issues and problems we had along the way, we could implement a JDBC driver
that passed the tests we had in different scenarios and provides resilience for database replica-
tion.

TClouds D2.2.4 Page 73 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Chapter 7

The C2FS Cloud-of-Clouds File System

Chapter Authors:
Alysson Bessani, Ricardo Mendes, Tiago Oliveira, Nuno Neves, Marcelo Pasin, Miguel Correia
and Paulo Verı́ssimo (FFCUL).

7.1 Introduction

A recent survey shows that backup, archiving and collaboration tools are among the top uses
of cloud services by companies [SUR]. All of these uses involve storage services like Amazon
S3, Dropbox, Apple iClouds, or Microsoft SkyDrive. The reasons for the popularity of these
services are their ubiquitous accessibility, scalability, pay-per-use model, and simplicity of use
for sharing data.

On the other hand, there is a certain reluctance to place too much trust on cloud storage
service providers (CSSPs), given a history of various kinds of problems: unavailability due to
outages [Bec09, Cho12], vendor lock-in [ALPW10], and data corruption due to bugs and er-
rors [AWS11, Ham12], malicious insiders or external cyber-attacks [Clo10, Dek12]. Part of
these threats may be overcome by solutions relying on client-side mechanisms that provide
end-to-end guarantees [MSL+10]. However, some of the threats above are common-mode, i.e.,
they will persist even with those protection mechanisms, in the case of a single CSSP – unavail-
ability or lock-in being the most obvious examples. In consequence, other recent works have
proposed the use of a cloud-of-clouds, i.e., a combination of cloud storage services from differ-
ent providers [ALPW10,BCE+12,BCQ+11]. The basic idea is to store data redundantly under
the expectation that such providers will have independent failure modes. Whatever protection
mechanisms are used, they will no longer depend on a single provider, giving a broad threat
coverage.

Cloud-of-clouds storage systems have thus been showing promise. It has in particular been
demonstrated that it is possible to build a trusted object storage (a set of registers in distributed
computing terminology [Lam86]) over a diverse set of untrusted CSSPs, without incurring
prohibitive costs in terms of performance or budget [BCQ+11]. However, the trustworthiness
and performance gains are obscured by lesser usability for end service users than say, databases
and file systems.

This chapter tries to achieve the best of both worlds, by proposing a cloud-of-clouds file
system, leveraging the use of multiple clouds for trustworthiness, and simultaneously offering a
regular file system interface, as a natural extension, with a stronger semantics, of the basic ob-
ject storage abstraction of current cloud-of-clouds storage systems [BCE+12, BCQ+11]. Easy
integration with existing local applications is promoted by making the API POSIX-like, with
the corresponding well-known semantics.

The proposed file system, dubbed C2FS (Cloud-of-Clouds File System), leverages almost

TClouds D2.2.4 Page 74 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

30 years of literature on distributed file systems, integrating classical ideas such as the consistency-
on-close semantics of AFS [HKM+88] and the separation of data and metadata of NASD
[GNA+98], with recent trends like using cloud services as a backplane for storage [DMM+12,
VSV12]. In a nutshell, C2FS contributes with the following novel ideas in cloud-backed storage
design:

• Multiple redundant cloud backends: the backend of C2FS is a set of (unmodified) cloud
storage services. All data stored in the clouds is encrypted and encoded for confidentiality
and storage-efficiency.

• Always write / avoid reading: writing to the cloud is cheap, but reading is expensive 1.
C2FS exploits this behavior for maximum cost-effectiveness: any updates on file contents
are pushed to the cloud (besides being written locally), but reads are resolved locally,
whenever possible.

• Modular coordination: instead of embedding customized locking and metadata function-
ality, as in most distributed file systems [ABC+02, KBC+00, WBM+06], C2FS uses a
modular and fault-tolerant coordination service, which not only maintains metadata in-
formation and performs concurrency control, but also assists consistency and sharing
management.

• Consistency anchors: an innovative principle and mechanism for providing strong consis-
tency guarantees, as opposed to the usual eventual consistency [Vog09], offered by cloud
storage services, but unnatural for programmers. We explore the new opportunities of-
fered by a file system, to improve the consistency/performance tradeoff without requiring
any modification to the cloud storage services.

The resulting system is a robust cloud-backed file system that uses the local storage plus
a set of providers for achieving extreme durability despite a large spectrum of failures and
security threats. Besides the specific design, we contribute with a set of generic principles for
cloud-backed file system design, re-applicable in further systems with different purposes than
ours.

A system like C2FS can be interesting for both individuals and large organizations wanting
to explore the benefits of cloud-backed storage. Some example use-cases are: secure personal
file system – similar to Dropbox, iClouds or SkyDrive, but without requiring complete trust on
any single provider; shared file system for organizations – cost-effective storage, but maintain-
ing control and privacy of organizations’ data; automatic disaster recovery – organizations’ files
stored in C2FS survive disasters not only of their IT but also of individual cloud providers; col-
laboration infrastructure – dependable data-based collaborative applications without running
code in the cloud, made easy by the POSIX-like API for sharing files.

We start the remaining of the chapter by discussing the limitations of current cloud-backed
file systems and our goals with C2FS (§7.2). The following section (§7.3) describes a general
framework for strengthening the consistency of cloud storage services, through the judicious
use of stronger consistency services as consistency anchors. This framework is used in the
design of C2FS, as described in §7.4, and its implementation, described in §7.5. An extensive
evaluation of C2FS is presented in §7.6, just before a discussion of the related work (§7.7) and
the conclusions of the chapter (§7.8).

1For example, in the Amazon S3, writing is actually free, and reading a GB is more expensive ($0.12 after the
first GB/month) than storing data ($0.09 per GB/month). Google Storage’s prices are similar.

TClouds D2.2.4 Page 75 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

S3FS,%S3QL%

Cloud
Storage

e.g., Amazon S3

Proxy(

Limita,on%1%
Trust(on(the(provider(Limita,on%2%

No(sharing(

Limita,on%3%
Single(point(of(failure(

BlueSky%%

Figure 7.1: Cloud-backed file systems and their limitations.

7.2 Context, Goals and Assumptions

7.2.1 Cloud-backed File Systems
Existing cloud-backed file systems mainly follow one of the two architectural models repre-
sented in Figure 7.1. The first model is implemented by BlueSky [VSV12] and several com-
mercial storage gateways (top of the figure). In this approach, a proxy is placed in the network
infrastructure of the organization, acting as a file server to the various clients and supporting one
or more access protocols, such as NFS and CIFS. The proxy implements the core functionality
of the file system, and interacts with the cloud to maintain the file data. File sharing is allowed
in a controlled way among clients, as long as they use the same proxy. The main limitations are
that the proxy can become a bottleneck and a single point of failure.

The second model is used in some open-source cloud-backed file systems like S3FS [S3F]
and S3QL [S3Qa] (bottom of Figure 7.1). These solutions let file system clients access directly
the cloud storage services. The absence of a proxy removes the single point of failure, which is
positive, but also removes the convenient rendezvous point for synchronization, creating diffi-
culties in supporting file sharing among clients.

A common limitation in both models is the need to trust the cloud storage provider with
respect to stored data confidentiality, integrity and availability. Although confidentiality can be
easily guaranteed by making clients (or the proxy) encrypt data before sending it to the cloud,
the problem is that sharing files in this way requires some key distribution mechanism, which
is not trivial to implement in a cloud environment, specially without the proxy. Integrity is
already provided in a few systems, such as SUNDR [LKMS04] and Depot [MSL+10], but
they need server-side code to run in the cloud storage provider, which is often not allowed by
these services (e.g., S3FS and S3QL do not need to execute code in the cloud as they use the
Amazon S3’s RESTful interface). Availability against cloud provider failures is, to the best of
our knowledge, not secured by current cloud-backed file systems.

7.2.2 Goals
C2FS most important goals are to ensure service availability, integrity and file content confiden-
tiality for a cloud-backed file system. C2FS leverages the concept of cloud-of-clouds, ensuring
availability in face of cloud failures, by replicating data in multiple providers. More specifically,

TClouds D2.2.4 Page 76 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

C2FS builds on the DepSky read and write protocols for raw storage from multiple untrusted
cloud storage providers [BCQ+11] (described in Chapter 4 of TClouds deliverable D2.2.2).
These protocols integrate quorums, secret sharing and erasure codes, to implement a Byzantine
fault-tolerant register in the cloud, preserving the integrity and confidentiality of the content.

Another goal is to offer strong consistency with well-defined file system semantics. In
particular, C2FS provides consistency-on-close semantics [HKM+88], guaranteeing that when
a file is closed by a user, all updates seen or done by this user will be observed by the rest of the
users. Since storage clouds only have eventual consistency, we resort to a coordination service
for maintaining file system metadata and synchronization. We rely on DepSpace [BACF08] for
this service, as it ensures linearizability on the operations performed on a deterministic tuple
space datastore [Gel85] implemented over a Byzantine fault-tolerant state machine replication.

A last goal is to leverage the scalability promised by the clouds, to support large numbers
of users, stored data, and numbers of files. Of course, C2FS is constrained by the limits of the
underlying infrastructure, and in particular it is not intended to be a “big data” file system, since
data is saved in the cloud and needs to be uploaded/downloaded. Recall that one of the key
success factors of big data processing models like MapReduce is that computation and storage
happen in the same nodes.

7.2.3 System and Threat Model
C2FS requires a group of ns cloud storage providers and on a set of nc computing nodes. The
former keeps the file data and the latter executes the coordination service. The same provider
can serve both types of resources, but this is optional. We assume that a subset of less than
one third of the storage providers or computing nodes can become unavailable, or be subject to
Byzantine failures (i.e., fs < ns

3
and fc < nc

3
). This is the optimal bound required for tolerating

Byzantine faults in a replicated system [LSP82]. Moreover, the system can have an undefined
number of C2FS clients that may also experience Byzantine failures.

Each C2FS client mounts the file system to enable users to access the storage. To enforce
access control restrictions (see §7.4.4), the user needs to have the following credentials: (1) a
public and private key pair to authenticate with the coordination service, where the public key
is stored in a certificate signed by some trusted certification authority; (2) a set of ns credentials
(e.g., canonical id and password) to access the different storage clouds used by the system.
To simplify the discussion, we will abstract these credentials and consider that all of them are
available to the user (in practice, the public and private key pair is stored securely in the client
machine, and the cloud credentials are obtained from the coordination service).

7.3 Strengthening Cloud Consistency

A key innovation of C2FS is the ability to provide a stronger consistent storage over the eventually-
consistent services offered by clouds [Vog09]. Given the recent interest in strengthening even-
tual consistency in other areas, such as in geo-replication [LFKA11], we describe the general
technique here, decoupled from the file system design.

The approach is based in two storage systems, one with limited capacity for maintaining
metadata and another to save the data itself. We call the metadata store a consistency an-
chor (CA) and require it to enforce some desired consistency guarantee S (e.g., linearizabil-
ity [HW90]), while the storage service (SS) may only offer eventual consistency. The aim is to
provide a composite storage system that satisfies S, even if the data is kept in SS.

TClouds D2.2.4 Page 77 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

WRITE(id, v):

w1: h← H(v)

w2: SS.write(id|h, v)

w3: CA.write(id, h)

READ(id):

r1: h← CA.read(id)

r2: while v = null do

r3: v ← SS.read(id|h)

r4: return (h = H(v))?v : ⊥
Figure 7.2: Algorithm for increasing the consistency of the storage service (SS) using a consistency
anchor (CA).

The algorithm for improving consistency is presented in Figure 7.2, and the insight is to
anchor the consistency of the resulting storage service on the consistency offered by the CA.
For writing, the client starts by calculating a hash of the data object (step w1), and then saves
the data in the SS together with its identifier id concatenated with the hash (step w2). Finally,
data’s identifier and hash are stored in the CA (step w3). One should notice that this mode of
operation creates a new version of the data object in every write. Therefore, a garbage collection
mechanism is needed to reclaim the storage space of no longer needed versions.

For reading, the client has to obtain the current hash of the data from CA (step r1), and then
needs to keep on fetching the data object from the SS until a copy is available (steps r2 and r3).
The loop is necessary due to the eventual consistency of the SS — after a write completes, the
new hash can be immediately acquired from the CA, but the data is only eventually available in
the SS.

In terms of consistency it is easy to see that the combined system will satisfy S. If a data
object is updated in the CA, the availability of this last version to other clients is ruled by S. For
instance, if the CA satisfies linearizability [HW90], after a writer updates an idwith a new hash,
any read executed in the CA will either see this hash or a hash produced later on. Furthermore,
after a read completes returning some version of the data, no later read will return a previous
version of the data.

To tolerate client crashes, the algorithm enforces the property that a write is complete only
if and when the client updates both SS and CA. If a client changes SS and then crashes, the new
version will not be available for reading because the new data hash will not be in the CA, but the
old value can still be read. On the other hand, we have a procedure to tolerate missing or wrong
writes which also handles misbehaving clients. The while loop in the read procedure exits after
a timeout expires (not represented in step r2, for simplicity), thus preventing missing writes to
SS from blocking it. Then, the exit value from step r3 is checked against the hash (step r4),
preventing wrong values from being returned. In consequence, if e.g., a malicious client writes
a hash in the CA and a non-matching data in SS, READ returns with no value.

7.4 C2FS Design

This section explains the design of C2FS. We start by presenting the most relevant design prin-
ciples, and then we describe the architecture of C2FS and give an overview of the main compo-
nents. Next, we look in detail into the operation of the C2FS Agent, addressing issues related
to caching, consistency and security model.

TClouds D2.2.4 Page 78 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

7.4.1 Design Principles
Pay-per-ownership. In a multi-user cloud-backed file system each client (entity with an ac-
count in the clouds) should be charged by the files it owns. This principle has several benefits.
First, it gives flexibility to the system’s usage model (e.g., different organizations can still share
directories paying only for what they create). Second, the shared service is built upon sev-
eral cloud accounts, allowing to reuse the protection and the isolation already granted by the
providers.
Strong consistency. Besides presenting a more familiar storage abstraction (when compared
with common cloud interfaces like the RESTful object-based storage), an important added value
that a file system can offer is consistency and coherency semantics stronger than the ones en-
sured by the storage clouds. We achieve this by applying the concept of consistency anchors
described in §7.3. Due to this, we opted to design C2FS to support strong consistency by default,
supporting other modes of operation, with only eventual guarantees if required.
Legacy preservation. A fundamental requirement of any practical cloud-backed storage sys-
tem is the use of the clouds as they are. It means that any feature needed from the cloud provider
that is not currently supported should be ruled out from any pragmatical design. Accordingly,
C2FS does not assume any special feature of computing and storage clouds, requiring only
that the clouds provide access to on-demand storage with basic access control lists and well-
provisioned VMs connected to the internet.
Multi-versioning. One of the big advantages of having the cloud as a backend is the potentially
unlimited scalability. C2FS neither deletes old versions of files nor destroys deleted files, but
keeps them in the cloud until a configurable garbage collector removes them. We believe using
the unbounded storage capacity of the cloud for keeping old files and traveling in time is a
valuable feature for several classes of applications.
Untrusted clouds. Cloud providers can become unavailable due to hardware faults, bugs, dis-
asters, and operator errors. Even more problematic are the rare cases in which these problems
corrupt stored data. Storing data in third party clouds may also raise privacy issues, since the
data becomes under the control of the provider. For these reasons we avoid trusting any provider
individually, and rely instead on distributed trust [SZ05]: each and every piece of data is both
read-from and written-into a set of providers, allowing tolerance to unavailability or misbehav-
ior of some of them.

7.4.2 Architecture Overview
Figure 7.3 represents the C2FS architecture with its three main components: the cloud-of-clouds
storage for saving the file data in a set of cloud storage services; the coordination service for
managing the metadata and to support synchronization; and the C2FS Agent that implements
most of C2FS functionality, and corresponds to the file system client mounted at the user ma-
chine.

The separation of file metadata from the data allows for parallel access to different file ob-
jects, and is already being utilized in individual cloud providers (e.g., [Cal11]). In C2FS, we
took this concept further and applied it to a cloud-of-clouds file system. The fact that a distinct
service is used for storing metadata gives some flexibility, as we can consider different ways
for its deployment depending on the users needs. Although we keep metadata in the cloud in
our general architecture, a large organization that uses the system for disaster tolerance and as
collaboration infrastructure could distribute the metadata service over its sites. Furthermore,
storage clouds support only basic containers and object abstractions for storage, which are ade-

TClouds D2.2.4 Page 79 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

MS%

MS% MS%

MS%

Lock%
Service%

Access%
Control%

Metadata%
CompuBng(
clouds(

Storage((
clouds(

Cache%

C2FS%
Agent%

Cache%

C2FS%
Agent%

Cache%

C2FS%
Agent%

Coordina,on%
Service%

CloudGofGclouds%storage%

Figure 7.3: C2FS architecture with its three main components.

quate for saving data but not as much to maintain metadata for things like file locks and links.
The metadata storage in C2FS is implemented with the help of a coordination service. Three

important reasons led us to select this approach instead of, for example, a NoSQL database
[Mon, LFKA11] or some custom service (as in other file systems). First, coordination services
offer consistent storage with enough capacity for this kind of data,2 and thus can be used as
consistency anchors for the cloud storage services. Second, state of the art coordination services
[BACF08, Bur06, HKJR10] implement complex replication protocols to ensure fault tolerance
for the metadata storage. Finally, coordination services support operations with synchronization
power that can be used to implement fundamental file system functionalities, such as locking.

File data is maintained both in the cloud-of-clouds storage and locally in a cache at the
client machine. This strategy is interesting in terms of performance, costs and availability.
Since cloud accesses usually entail large latencies, C2FS attempts to keep in the user machine
a copy of the accessed files. Therefore, if the file is not modified by another client, subsequent
reads do not need to fetch the data from the clouds. As a side effect, there are cost savings as
there is no need to pay for the download of the file. On the other hand, we follow the approach
of writing everything to the cloud (enforcing consistency-on-close semantics [HKM+88]), as
most providers let clients upload files for free to create incentive for storing data in the cloud.
Consequently, no completed update is lost in case of a local failure.

In our current implementation, the cloud-of-clouds storage is based on the DepSky algo-
rithm, providing a single-writer multiple-reader register abstraction, supporting eventually con-
sistent storage [BCQ+11]. Our coordination service runs on computing clouds, relying on
an extended version of DepSpace, which offers a dependable and secure tuple space datas-
tore [BACF08]. Both mechanisms are Byzantine fault-tolerant [CL02], and DepSpace is im-
plemented using the TClouds State Machine Replication component,3 BFT-SMART. The C2FS
Agent implements the core algorithms of C2FS, relying on the trusted cloud-of-clouds storage
and the coordination service, as detailed in §7.4.3.

2Being main-memory databases, their maximum storage capacity is bounded by the amount of RAM of the
servers they are deployed.

3In fact, during the 2nd year of TClouds we updated the old codebase of DepSpace (described in [BACF08])
for working with BFT-SMART and its durability layer (Chapter 3), as described in §3.4.

TClouds D2.2.4 Page 80 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

7.4.3 C2FS Agent

Basic Services

The design of the C2FS Agent is based on the use of three (local) services that abstract the
access to the coordination service and the cloud-of-clouds storage:
Storage service. The storage service provides an interface to save and retrieve variable-sized
objects from the cloud-of-clouds storage. Since cloud providers are located over the internet,
C2FS overall performance is heavily affected by the latency of remote data accesses and up-
dates. To address this problem, we opted for reading and writing whole files as objects in the
cloud, instead of splitting them in blocks and accessing block by block. This allows most of
the client files (if not all) to be stored locally, and makes the design of C2FS simpler and more
efficient for small-to-medium sized files.

To achieve adequate performance, we rely on two levels of caches, whose organization has
to be managed with care in order to avoid impairing consistency. First, all files read and written
are copied locally, making the local disk a large and long term cache. More specifically, the disk
is seen as an LRU file cache with GBs of space, whose content is validated in the coordination
service before being returned, to ensure that the most recent version of the file is used. Second,
a main memory LRU cache (hundreds of MBs) is employed for holding open files. This is
aligned with our consistency-on-close semantics, since, when the file is closed, all updated
metadata and data kept in memory are flushed to the local disk and the clouds.

Level Location Latency Fault tolerance Sys call
0 main memory microsec none write
1 local disk millisec crash fsync
2 cloud seconds local disk -
3 cloud-of-clouds seconds f clouds close

Table 7.1: C2FS durability levels and the corresponding data location, write latency, fault tolerance and
example system calls.

The actual data transfers between the various storage locations (memory, disk, clouds) are
defined by the durability levels required by each kind of system call. Table 7.1 shows examples
of POSIX calls that cause data to be stored at different levels, together with their location,
storage latency and provided fault tolerance.

For instance, a write in an open file causes the data to be saved in the memory cache, which
gives no durability guarantees (Level 0). Calling fsync flushes the data (if modified) to the
local disk,4 achieving the standard durability of local file systems, i.e. against process or system
crashes (Level 1). In cloud-backed storage systems, when a file is closed, the data is written
to the cloud. Since these systems (such as Dropbox or S3FS) are backed by a single cloud
provider, they can survive a local disk failure but not a cloud failure (Level 2). However, in
C2FS, the data is written to a set of clouds, such that failure of up to f providers is tolerated
(Level 3).
Metadata service. The metadata service resorts to the coordination service to store file and
directory metadata, together with information required for enforcing access control. In par-
ticular, it ensures that each file system object is represented in the coordination service by a
metadata tuple containing: the object name, the type (file, directory or link), its parent object
(in the hierarchical file namespace), the object metadata (size, date of creation, owner, ACLs,

4Alternatively, a file is flushed to disk on each write if the file is opened in synchronous mode.

TClouds D2.2.4 Page 81 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Coordina,on%
Service%

Metadata%Service%

Lock%Service%

Storage%Service%

Memory(Cache(

Metadata(Cache(

open%

write%

read%

close%

1.(getMetadata(

1.(get(

(2.(read)(

(3.(put)(

1.(condiBonal(write(

1.(remove(

3.(updateMemory(

1.(read(

(2.(read)(

3.(write(

2.(updateMetadata(

1.(write(

1.(read(

(2.(tryLock)(

1.(read(

3.(write(

2.(write(

1.(sync(

4.(flushMetadata(
1.(get(

2.(replace(

(5.(unlock)(

Legend&

CloudGofGClouds%Storage%

Call(forking(
Call(
(OpBonal(call)(

Figure 7.4: Common file system operations in C2FS. The following conventions are used: 1) at each
call forking (the dots between arrows), the numbers indicate the order of execution of the operations; 2)
operations between brackets are optional; 3) each file system operation (e.g., open/close) has a different
line pattern.

etc.), an opaque identifier referencing the file in the storage service (and, consequently, in the
cloud-of-clouds storage) and the cryptographic hash of the contents of the current version of the
file. These two last fields represent the id and hash stored in the constancy anchor (see §7.3).
Metadata tuples are accessed through a set of operations offered by the local metadata service,
which are then translated into different read, write and replace calls to the coordination service.

To deal with bursts of metadata accesses (e.g., opening a file with the vim editor can cause
more than five stat calls), a small short-lived main memory cache (up to few MBs for tens of
millisenconds) is utilized to serve metadata requests. The objective of this cache is to reuse the
data fetched from the coordination service for at least the amount of time spent to obtain it from
the network.
Locking service. As in most consistent file systems, we use locks to avoid write-write conflicts.
The locking service implements the following protocol with DepSpace: when a file needs to be
locked (e.g., open for writing), the service tries to insert a lock tuple associating the user with
the file. Since the insert action is atomic, this ensures that the operation only succeeds if no
other lock tuple exists for this file. Therefore, if the tuple is inserted, the client obtains the
lock and can use the file exclusively, otherwise the lock fails. Unlocking the file is as simple as
deleting the lock tuple from the coordination service.

In order to address faults in clients holding locks for some files, all lock tuples are created
with a lease that causes their automatic removal when a certain interval expires. Consequently,
the lock tuple needs to be renewed periodically, if a client wants to keep a certain lock.

File Operations

Figure 7.4 illustrates the execution of C2FS when serving the four main file system calls, open,
write, read and close. To implement these operations, the C2FS Agent intercepts the system
calls issued by the operating system and invokes the procedures provided by the storage, meta-

TClouds D2.2.4 Page 82 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

data and locking services.
Opening a file. The tension between provisioning strong consistency and suffering high latency
in cloud access led us to provide consistency-on-close semantics [HKM+88] and synchronize
files only in the open and close operations. Moreover, given our aim of having most client files
(if not all) locally stored, we opted for reading and writing whole files from the cloud. With this
in mind, the open operation comprises three main steps: (i) read the file metadata, (ii) optionally
create a lock if the file is opened for writing, and (iii) read the file data to the local cache. Notice
that these steps correspond to an implementation of the READ algorithm of Figure 7.2, with an
extra step to ensure exclusive access to the file for writing.

Reading the metadata entails fetching the file metadata from the coordination service, if it is
not available in the metadata cache, and then make an update to this cache. Locking the file is
necessary to avoid write-write conflicts, and if it fails, an error is returned. Reading the file data
either uses the copy in the local cache (memory or disk) or requires that a copy is made from the
cloud. The local data version (if available) is checked to find out if it corresponds to the one in
the metadata service. In the negative case, the new version is collected from the cloud-of-clouds
and copied to the local storage. If there is no space for the file in main memory (e.g., there are
too many open files), the data of the least recently used file is first pushed to disk (as a cache
extension) to release space.
Write and read. These two operations only need to interact with the local storage. Writing to
a file requires updating the memory-cached file and the associated metadata cache entry (e.g.,
the size and the last-modified timestamp). Reading just causes the data to be fetched from the
main memory cache (as it was copied there when the file was opened).
Closing a file. Closing a file involves the synchronization of cached data and metadata with the
coordination service and the cloud-of-clouds storage. First, the updated file data is copied to the
local disk and to the cloud-of-clouds. Then, if the cached metadata was modified, it is pushed
to the coordination service. Lastly, the file is unlocked if it was originally opened for writing.
Notice that these steps correspond to the WRITE algorithm of Figure 7.2.

As expected, if the file was not modified since opened or was opened in read-only mode, no
synchronization is required. From the point of view of consistency and durability, a write to the
file is complete only when the file is closed, respecting the consistency-on-close semantics.
Other operations. C2FS supports the other file system calls defined in the POSIX standard.
There are operations like link, fstat and rename that only require access to the metadata service,
while others like sync and fsync are used to copy the contents of the main memory cache to
disk. We restrain from giving more details about these operations due to space constraints.

Garbage Collection

During normal operation, C2FS saves new versions of the file data without deleting the previous
ones, and files removed by the user are just marked as deleted in the associated metadata. These
two features support the recovery of a history of the files, which is useful for some applications.
However, in general this can increase the cost of running the system, and therefore, C2FS
includes a flexible garbage collector to enable various policies for reclaiming space.

Garbage collection runs in isolation at each C2FS Agent, and the decision about reclaiming
space is based on the preferences (and budget) of an individual user. By default, its activation is
guided by two parameters defined upon the mounting of the file system: number of written bytes
W and number of versions to keep V . Every time a C2FS agent writes more than W bytes, it
starts the garbage collector as a separated thread that runs in parallel with the rest of the system
(other activation policies are possible). This thread fetches the list of files owned by this user

TClouds D2.2.4 Page 83 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

and reads the associated metadata from the coordination service. Next, it issues commands to
delete old file data versions from the cloud-of-clouds storage, such that only the last V versions
are kept. Additionally, it also eliminates the data versions of the files removed by the user. Later
on, the corresponding metadata entries are also erased from the coordination service.

7.4.4 Security Model

The security of a shared cloud-of-clouds storage system is a tricky issue, as the system is con-
strained by the access control capabilities of the backend clouds. A straw-man implementation
would allow all clients to use the same account and privileges on the cloud services, but this
has two drawbacks. First, any client would be able to modify or delete all files, making the
system vulnerable to malicious users. Second, a single account would be charged for all clients,
preventing the pay-per-ownership model.

C2FS implements the enhanced POSIX’s ACL model [Gru03], instead of the classical Unix
modes (based on owner, group, others). The owner O of a file can give access permissions to
another user U through the setfacl command, passing as parameters the client identifier of
U , the permissions and the file name. The getfacl command returns the permissions of a
file.

As a user has separate accounts in the various cloud providers, and since each probably has a
different identifier, C2FS needs to associate with every client identifier a list of cloud canonical
identifiers. This association is kept in a tuple in the coordination service, and is loaded when the
client mounts the file system for the first time. When the C2FS Agent intercepts a setfacl
request from a clientO to set permissions on a file for a user U , the following steps are executed:
(i) O uses the two lists of cloud canonical identifiers (of O and U) to update the ACLs of the
objects that store the file data in the clouds with the new permissions; and then, (ii) O also
updates the ACL associated with the metadata tuple of the file in the coordination service to
reflect the new permissions (see [BACF08]).

Notice that we do not trust the C2FS Agent to implement the access control verification,
since it can be compromised by a malicious user. Instead, we rely on the access control enforce-
ment of the coordination service and the cloud providers. However, we do not trust individual
providers absolutely: even if up to fs cloud providers misbehave and give access to a file to
some unauthorized user, it would be impossible to retrieve the contents due to the secret sharing
and encryption layer implemented by the cloud-of-clouds storage (i.e., DepSky).

Our design assumes that cloud storage providers support ACLs for containers as well as
for objects, as implemented in Amazon S3 [S3A] and Google Storage [GOO], and specified
in standards such as CDMI [SNI12]. Although some of the providers we currently use do not
support ACLs, we expect this feature will be available in the near future.

7.4.5 Private Name Spaces

One of the goals of C2FS is to scale in terms of users and files. However, the use of a coordi-
nation service could potentially create a scalability bottleneck, as this kind of service normally
maintains all data in main memory (e.g., [BACF08,Bur06,HKJR10]) and requires a distributed
agreement to update the state of the replicas in a consistent way. To address this problem, we
take advantage of the observation that, although file sharing is an important feature of cloud-
backed storage systems, the majority of the files are not shared [DMM+12,LPGM08]. Looking
at the C2FS design, all files and directories that are not shared (and thus not visible to other

TClouds D2.2.4 Page 84 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

users), do not require specific tuples in the coordination service, and instead can have their
metadata grouped in a single object saved in the cloud-of-clouds storage.

This object is represented with a Private Name Space (PNS) abstraction. A PNS is a local
object kept by the metadata service of the C2FS agent, containing the metadata of all private
files of a user. Each PNS has an associated PNS tuple in the coordination service, which has
the user name and a reference to an file in the clouds-of-clouds storage. The file keeps a copy
of the serialized metadata of all private files of the user.

Working with non-shared files is slightly different from what was shown in Figure 7.4.
When mounting the file system, the agent fetches the user PNS tuple from the coordination
service and the metadata from the clouds-of-clouds storage, locking the PNS to avoid inconsis-
tencies caused by two clients logged as the same user. When opening a file, the user gets the
metadata locally as if it was in cache (since the file is not shared), and if needed fetches the data
from the cloud-of-clouds storage (as in the normal case). On close, if the file was modified,
both the data and the metadata are updated in the cloud-of-clouds storage. The close operation
completes when both updates finish.

Notice that a file can be removed (or added) from the PNS at any moment if its permissions
change, causing the creation (or removal) of a corresponding metadata tuple in the coordination
service.

With PNSs, the amount of storage used in the coordination service is proportional to the
percentage of shared files in the system. For example, in a setup with 1M files where only 5%
of them are shared (e.g., the engineering trace of [LPGM08]): (i) Without PNSs, it would be
necessary 1M tuples of around 1KB, for a total size of 1GB of storage (the approximate size of a
metadata tuple is 1KB, assuming 100 byte file names); (ii) With PNSs, only 50 thousand tuples
plus one PNS tuple per user would be used, requiring a little over 50MB of storage. Even more
importantly, by resorting to PNSs, it is possible to reduce substantially the number of accesses
to the coordination service, allowing more users and files to be served.

7.5 C2FS Implementation

C2FS is implemented as a file system mounted in user space, using the FUSE-J wrapper to
connect the C2FS agent to the FUSE library [FUS]. The C2FS agent was developed in Java
mainly because our building blocks – DepSky and DepSpace – were based on Java. More-
over, the high-latencies of cloud accesses make the overhead of using a Java-based file system
comparatively negligible.
Building blocks. Our C2FS prototype uses an updated version of DepSpace based on BFT-
SMaRt [BSA], a Java state-machine replication library implementing a protocol similar to
PBFT [CL02]. We extended DepSpace with some new operations (replace, rdAll), timed
tuples and triggers. Timed tuples have an expiration time, and are fundamental for tolerating
faults in the locking protocol. Triggers allow a single tuple update to cause several updates in the
tuple space, which are quite useful for implementing file system operations such as rename.

We also extended DepSky to support a new operation readWithHash(du,h), which
instead of reading the last version of a data unit, reads the version with a given hash h, if
available. The hashes of all versions of the file are stored in the DepSky’s internal metadata
object (not related to C2FS files metadata), stored in the clouds [BCQ+11].
Modes of operation. C2FS supports three modes of operation, based on the required consis-
tency and sharing requirements of the stored data. The first mode, standard, is the one described
up to this point. The second mode, non-blocking, is a weaker version of C2FS in which closing

TClouds D2.2.4 Page 85 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

a file does not block until the file data is on the clouds, but only until it is written locally and
enqueued to be sent to the clouds in background. In this model, the file metadata is updated and
the its lock released only after the file contents are updated to the clouds, and not on the close
call. Naturally, this model leads to a significant performance improvement at cost of a reduction
of the durability and consistency guarantees. Finally, the non-sharing mode is interesting for
users that do not need to share files, and represents a design similar to S3QL [S3Qa], but using
a cloud-of-clouds instead of a single storage service. This version does not require the use of
the coordination service, and all metadata is stored on private name spaces.
Codebase. Overall, the C2FS implementation requires 17168 lines of code, being 3227 in
DepSky, 8010 in DepSpace and the remaining in the C2FS Agent.

7.6 Evaluation

In this section we evaluate the different modes of operation of C2FS and compare them with
other cloud-backed file systems. Our main objective is to understand how our system behave
with a set of representative workloads and shed light on the costs of our design.

7.6.1 Setup & Methodology

Our setup considers a set of clients running on a cluster of Linux 2.6 machines with two quad-
core 2.27 GHz Intel Xeon E5520, 32 GB of RAM memory, and a 146 GB 15000 RPM SCSI
hard disk.

We consider a setup with ns = 4 CSSPs, tolerating a single faulty storage cloud. The stor-
age clouds used were Amazon S3 (US), Google Storage (US), Rackspace Cloud Files (UK)
and Windows Azure (UK). In the same way, we consider three deployments of the coordina-
tion service in our evaluation, all of them with nc = 4 replicas (tolerating a single Byzantine
fault). First, we set up a cloud-of-clouds (CoC) composed of four computing clouds – EC2
(Ireland), Rackspace (UK), Windows Azure (Europe) and Elastichosts (UK) – with one coor-
dination service replica on each of them. The second scenario (EC2) represents the case in
which the coordination service runs in a single remote trusted provider, in our case, Amazon
EC2 (Ireland). Our third scenario considers all coordination service replicas running locally in
the same cluster as the clients, representing the case in which the organization supports its users
collaboration. In all cases, the VM instances used are EC2’ M1 Large [EC2a] (or similar).

We selected a set of benchmarks following some recent recommendations [TBZS11,TJWZ08],
all of them based on the Filebench benchmarking tool [Fil]. Moreover, we created two new
benchmarks for simulating some behaviors of interest for cloud-backed file systems. In all
experiments we report averages and standard deviations calculated from at least 100 measure-
ments, discarding 5% of the outliers.

We compare C2FS in different modes of operation, namely: C2FS, NB-C2FS (non-blocking)
and NS-CSFS (non-sharing). In all cases we configure the metadata cache expiration time to
500 ms and do not use private name spaces. In §7.6.4 we study variations of these parameters.
Moreover, we compare these modes with S3QL [S3Qa] and S3FS [S3F]. Finally, we use a
FUSE-J-based local file system (LocalFS) implemented in Java as a baseline. We use such sys-
tem to ensure an apples-to-apples comparison, since a native file system presents much better
performance than a user-space file system based on FUSE-J.

TClouds D2.2.4 Page 86 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

7.6.2 Micro-benchmarks
To better understand the cost of running C2FS, we need to understand the costs of accessing
the cloud-of-clouds storage (i.e., DepSky register abstraction) and the coordination service (i.e.,
DepSpace replicated database).
Cloud-of-clouds storage. Figure 7.5 shows the read and write latencies of DepSky and Amazon
S3 considering 8 different file sizes, ranging from 1KB to 16MB.

100

1K

10K

1K 4K 16K 64K 256K 1M 4M 16M

L
a
te

n
c
y
 (

m
s
)

Data size (bytes)

DepSky read
DepSky write

S3 read
S3 write

Figure 7.5: Cloud storage latency (milliseconds, log scale) for reading and writing different data sizes
using DepSky and S3.

The figure shows that small to medium files (up to around 4MB) can be read by DepSky in
less than 2 seconds, and 16MB files are read in less than 6 seconds. Writing files, on the other
hand, is roughly 3× slower, with the exception of 16MB files, where a write is 91% slower
than a read. When comparing the results of cloud-of-clouds storage with Amazon S3, it can be
seen that the latter presents better latency for small files (smaller than 64KB for reads and 1MB
for writes). However, for bigger files, a replicated solution is significantly better. Considering
reads, this is in accordance with [BCQ+11], since we fetch half of the file5 from the two fastest
clouds on every operation, we get better tolerance to the unpredictable latency of cloud services.
In the case of writes, our results show that S3 is substantially less efficient when dealing with
4MB and 16MB files. DepSky avoids this problem by storing only half of the file (2MB and
8MB, respectively) in each cloud, which they can handle proportionally faster.
Coordination service. Table 7.2 shows the latency of some representative metadata service
operations that directly translate to coordination service invocations when the metadata cache
is not used (as in this experiment).

MS Operation Local EC2 CoC
getMetadata 2.21± 0.85 79.85± 0.85 72.81± 1.48
getDir 3.26± 0.45 84.56± 1.51 94.03± 0.81
update 5.13± 1.42 86.32± 0.83 96.44± 1.11
put 5.82± 0.88 87.15± 2.21 96.96± 1.36
delete 3.31± 0.67 84.52± 0.91 93.95± 0.68

Table 7.2: Latency (ms) of some metadata service operations (no cache) for different setups of DepSpace
with (tuples of 1KB).

The table shows the latency difference between running the coordination service inside the
same network as the clients (Local) and in a remote location (EC2 and CoC). Overall, lo-
cally the operations require from 2-6 ms. When deployed in a remote single cloud (in this

5This happens due to the use of erasure codes in DepSky [BCQ+11].

TClouds D2.2.4 Page 87 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

case, EC2 in Ireland), the average latency of 79 ms between our client and the replicas makes
the perceived latency increase substantially. Interestingly, the use of cloud-of-clouds does not
make the latency of the metadata service operations substantially worse. In fact, the read-only
getMetadata operation, that returns a single metadata tuple, is faster in the CoC case due
to the smaller average latency between the client and the replicas, 65 ms. The getDir oper-
ation, which is also read-only, is slower for two factors: the search for all matching tuples in
the system is much slower and the reply size is much bigger (several tuples) when compared
with getMetadata. For the other operations, which require the execution of a Byzantine
agreement [BACF08], there is also an average increase of 10 ms when compared with EC2.
This, together with a 14 ms difference between the client-replicas latency in these two set-
tings, shows that running the Byzantine agreement protocol between the replicas in different
clouds takes roughly 24 ms. This makes sense since the inter-clouds latency ranges from 2.5 ms
(Azure-EC2) to 16 ms (Azure-Elastichosts), with an average of 10.6 ms, which is substantially
smaller than the client-replica latency.

Filebench micro-benchmarks. Table 7.3 shows the results for different Filebench micro-
benchmarks considering all setups and modes of operation for C2FS.

Micro-benchmark #Operations File size
C2FS

S3FS
NB-C2FS

NS-C2FS S3QL LocalFS
Local EC2 CoC Local EC2 CoC

sequential read 1 4MB 1 1 1 6 1 1 1 1 1 1
sequential write 1 4MB 1 1 1 2 1 1 1 1 1 1
random 4KB-read 256k 4MB 11 11 11 15 11 11 11 11 11 11
random 4KB-write 256k 4MB 36 34 36 52 35 33 35 35 152 37
create files 200 16KB 156 282 321 596 5 85 95 1 1 1
copy files 100 16KB 430 467 478 444 3 84 94 1 1 1

Table 7.3: Latency (in seconds) of several Filebench micro-benchmarks for three variants of C2FS,
S3QL, S3FS and LocalFS.

The considered benchmarks are the following [Fil]: sequential reads, sequential writes, ran-
dom reads, random writes, create files and copy files. The first four benchmarks are IO-intensive
and do not consider open and close operations, while the last two are metadata-intensive. The
results of the sequential and random r/w benchmarks show that the behavior of the evaluated
file systems is similar, with the exception of S3FS and S3QL. S3FS low performance comes
from its lack of main memory cache for opened files [S3F], while S3QL low random write
performance is the result of a known issue with FUSE, that makes small chunk writes very
slow [S3Qb]. This benchmark performs 4KB-writes, much smaller than the recommended
chunk size of S3QL (128KB).

The results for create files and copy files show the difference between running a local or
single-user cloud-backed file system (NS-C2FS, S3QL and LocalFS) and a shared and/or block-
ing cloud-backed file system (C2FS, S3FS and NB-C2FS): three to four orders of magnitude.
This is not surprising, given that C2FS, NB-C2FS and S3FS access a remote service for each
create, open or close operation. Furthermore, NB-C2FS’ latency is dominated by the coordi-
nation service operations’ latency, while in C2FS the latency is dominated by the read/write
operations in the cloud-of-clouds storage. This makes the standard C2FS almost not sensitive
to the setup of the coordination service. In the end, these results confirm that running the coor-
dination service in EC2 or in a CoC have little impact in terms of performance, despite being a
huge improvement in terms of failure independence.

TClouds D2.2.4 Page 88 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

7.6.3 Application-based Benchmarks
In this section we present some application-based benchmarks illustrating different uses of
C2FS.
Personal storage service. A representative workload of C2FS is one that corresponds to its
use as a personal cloud storage service [DMM+12] in which desktop application files (e.g.,
xlsx, docx, pptx, odt, pdf) are stored and shared. We designed a new benchmark to simulate
opening, saving and closing actions on a text document (odt file) in the OpenOffice application
suite. The benchmark follows the behavior observed in traces of the real system. As expected,
OpenOffice works similarly as other modern desktop applications [HDV+11]. However, the
files under C2FS are just copied to a temporary directory on the local file system where they
are manipulated as described in [HDV+11]. Nonetheless, as can be seen in the benchmark
definition (Figure 7.6), these actions (specially save) still impose a lot of work on the cloud-
backed file system.

Open Action: 1 open(f,rw), 2 read(f), 3-5 open-write-close(lf1), 6-8 open-read-close(f), 9-11 open-read-
close(lf1)

Save Action: 1-3 open-read-close(f), 4 close(f), 5-7 open-read-close(lf1), 8 delete(lf1), 9-11 open-write-
close(lf2), 12-14 open-read-close(lf2), 15 truncate(f,0), 16-18 open-write-close(f), 19-21 open-fsync-
close(f), 22-24 open-read-close(f), 25 open(f,rw)

Close Action: 1 close(f), 2-4 open-read-close(lf2), 5 delete(lf2)

Figure 7.6: File system operations invoked in the personal storage service benchmark, simulating an
OpenOffice text document open, save and close actions (f is the odt file and lf is a lock file).

Table 7.4 shows the average latency of each of the three actions of our benchmark for Lo-
calFS, S3QL, C2FS and S3FS, considering a file of 1.2MB, which corresponds to the average
file size observed in 2004 (189KB) scaled-up 15% per year to reach the expected value for
2013 [ABDL07].

Action LocalFS S3QL NS-C2FS NB-C2FS (CoC) C2FS (CoC) S3FS
Open 20.5± 1.6 5.7± 0.6 20.5± 6.1 779.6± 282.7 4812.8± 1655.3 4485± 143.2
Save 54.8± 9.8 78.6± 8.6 100.7± 21.1 1169± 875.8 16859.3± 6556.9 13677.1± 1730.7
Close 0.6± 0.5 1.02± 0.1 1.5± 0.5 190.1± 44.4 260.3± 3.55 800.3± 13.6
Open (L) 19± 0.8 3.06± 0.7 17.5± 0.7 19.6± 16.6 222.9± 7.6 817.5± 31.3
Save (L) 50.6± 1.2 56.2± 8.77 87.4± 21 131.2± 71.8 7703.5± 2619 9917.6± 1753.3
Close (L) 0.06± 0.2 0.05± 0.02 0.07± 0.26 0.15± 0.36 0.25± 0.44 271.7± 12.1

Table 7.4: Latency and standard deviation (ms) of a personal storage service actions in a file of 1.2MB.
The (L) variants maintain lock files in the local file system. C2FS and NB-C2FS uses a CoC coordination
service.

The results show that NS-C2FS presents the best performance among the ones we evaluated,
having a performance very similar to a local file system, where a save takes around 100 ms.
Comparing it with S3QL and S3FS, we can see that using a cloud-of-clouds storage as a back-
end for a file system can be similar to a local file system, if the correct design decisions are
taken.

The NB-C2FS requires substantially more time for each phase due to the number of ac-
cesses to the coordination service, specially to deal with the lock files used in this workload.
Nonetheless, saving a file in this system takes around 1.2 seconds, which is acceptable from the
usability point of view.

A even slower behavior is observed in the (blocking) C2FS, where when a lock file is cre-
ated, the system blocks waiting for this small file to be pushed to the clouds. This makes

TClouds D2.2.4 Page 89 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

the save operation extremely slow. Interestingly, the latency of save in C2FS is close to S3FS,
which also writes synchronously to the cloud, and S3QL which, as already mentioned, performs
poorly with small file writes.

We observed that most of the latency of these actions comes from the manipulation of lock
files. However, these files do not need to be stored in the C2FS partition, since we already avoid
write-write conflicts. We modified the benchmark to represent an application that writes lock
files locally (e.g., in /tmp), just to avoid conflicts between applications in the same machine.
The three last rows of the table present these results, which show that removing such lock files
makes the cloud-backed system much more responsive. The takeaway here is that the usability
of C2FS could be substantially improved if applications take into consideration the limitations
of accessing remote services.
Sharing files. Personal cloud storage services are often used for sharing files in a controlled
and convenient way [DMM+12]. We designed an experiment for comparing the time it takes
for a shared file written by a client to be available for reading by another client, using C2FS
and non-blocking C2FS, both using a CoC coordination service. We did the same experiment
considering a Dropbox shared folder (creating random files to avoid deduplication). We ac-
knowledge that the Dropbox design [DMM+12] is quite different from C2FS, but we think it
is illustrative to show how a cloud-of-clouds personal storage service might compare with a
popular system.

The experiment considers two clients A and B deployed in our cluster. We measure the
elapsed time between the instant client A closes a variable-size file that it wrote to a shared
folder and the instant it receives an UDP ACK from client B informing the file was available.
Clients A and B are Java programs running in the same LAN, with a ping latency of around
0.2 milliseconds, which is negligible considering the latencies of reading and writing. Table 7.5
shows the results of this experiment for different file sizes.

File Size C2FS NB-C2FS Dropbox
256 KB 1172± 82.4 6408± 735 9895± 10667
1 MB 1679± 170.6 8532± 746 12070± 7783
4 MB 3915± 408.2 20016± 913 20511± 1797

16 MB 12281± 1081 68211± 6127 83535± 3526

Table 7.5: Sharing file latency (ms) for C2FS (in the CoC) and Dropbox for different file sizes.

The results show that the latency of sharing in C2FS is significantly better than what peo-
ple experience in current personal storage services. These results do not consider the benefits
of deduplication, which C2FS does not support. However, if a user encrypts its critical files
locally before storing them in Dropbox, the effectiveness of deduplication will be decreased
significantly.

Table 7.5 also shows that the latency of the standard C2FS is much smaller than the non-
blocking version (C2FS-NB). This is explained by the fact that C2FS waits for the file write
to complete before returning to the application, making the benchmark measure only the delay
of reading the file. This illustrates the benefits of C2FS: when A completes its file closing, it
knows the data is available to any other client the file is shared with.
Server workloads in C2FS. This section considers the scenario in which critical servers main-
tain their files in C2FS to benefit from its durability (e.g., for automatic backup and disaster
recovery). For this scenario, we consider a client running a service that imposes some file sys-
tem workload. This means there is a set of files being updated by a single client, thus we con-

TClouds D2.2.4 Page 90 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

sider NS-C2FS and NB-C2FS, which update the cloud in background. The following Filebench
application-emulation workloads [Fil] were considered: VarMail (VM; similar to Postmark, but
with multiple threads [TJWZ08]), FileServer (FS; similar to SPECsfs), WebServer (WS; mostly
read workload) and Mongo (Mo; file system activity of the MongoDB NoSQL database [Mon],
where 16KB files are appended, read and eliminated).

Figure 7.7 shows the results of executing these benchmarks with different setups of NB-
C2FS and NS-C2FS, together with S3QL and LocalFS.

 30

 60

 90

 120

 150

VM FS WS Mo

T
im

e
 (

s
)

Local FS
S3QL

NS-C2FS
NB-C2FS

(a) C2FS vs S3QL vs Local FS.

1

10

 100

1k

 10k

VM FS WS Mo

T
im

e
 (

s
)

Local
EC2

CoC

(b) NB-C2FS (Local, EC2, CoC).
Figure 7.7: Execution time of Filebench application benchmarks for: (a) LocalFS, S3QL, NS-C2FS and
NB-C2FS (Local); and (b) NB-C2FS in different storage setups.

In general, these benchmarks are not favorable to S3QL, since all of them contain small
data writes. Moreover, one can see that NB-C2FS and NS-C2FS present a latency much higher
than LocalFS. The only exception is for WebServer, a mostly-read benchmark, with a relatively
small working set. For the other benchmarks, the cost of managing metadata plays an important
role. In particular, the NB-C2FS coordination service accesses (even in a local network) make
it 3-10× slower than LocalFS. Interestingly, NB-C2FS is faster than NS-C2FS in the FileServer
and Mongo benchmarks, even with the lack of the coordination service in the latter. This hap-
pens because these benchmarks use a lot of files, that need to have their metadata updated in
each write. This implies the serialization and transmission of the whole metadata collection
(a PNS) to the clouds, which is done too many times. This could be alleviated by dividing the
metadata collection in multiple, smaller, PNSs. We note these application-benchmarks were not
modified for a cloud-backed file system, and in this sense our results are promising: it appears
to be possible to modify applications like these to make use of cloud-backed file systems more
efficiently.

Figure 7.7(b) shows that running NB-C2FS in remote service increases the benchmarks
latency 2-3 orders of magnitude. This is explained by the difference in the latency of accessing
the remote coordination service, which indicates that such workloads might be too intensive for
a NB-C2FS with a remote coordination service. The tests confirm the trend observed in Tables
7.2 and 7.3, where deploying the coordination service in EC2 or in the CoC makes almost no
difference in the system performance.

7.6.4 Varying C2FS Parameters
Figure 7.8 shows some results for two metadata-intensive micro-benchmarks (copy files and
create files) considering some variations of two C2FS parameters.

TClouds D2.2.4 Page 91 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

 0
 30
 60
 90

 120
 150
 180

0 250 500

T
im

e
 (

s
)

Expiration time (ms)

Create
Copy

(a) Metadata cache.

 0
 20
 40
 60
 80

 100
 120

0 50 100 0 50 100

T
im

e
 (

s
)

Sharing (%)

Create Copy

(b) Private Name Spaces.
Figure 7.8: Effect of metadata cache expiration time (ms) and PNSs with different file sharing percent-
ages in two metadata intensive micro-benchmarks.

As described in §7.4, we implemented a short-lived metadata cache to deal with bursts of
metadata access operations (e.g., stat). All experiments consider an expiration time of 500
ms for this cache. Figure 7.8(a) shows how changing this value affects the performance of the
system. The results clearly indicate that not using such metadata cache (expiration time equals
zero) severely degrades the system performance. However, beyond some point, increasing it
does not bring much benefit either.

Figure 7.8(b) shows the latency of the same benchmarks considering the use of PNS (Per-
sonal Name Spaces - see §7.4.5) with different percentages of files shared between more than
one user. Recall that all previous results consider full-sharing, without using PNS. As expected,
the results show that as the number of private files increases, the performance of the system
improves. For instance, when only 25% of the files are shared – more than what was observed
in the most recent study we are aware of [LPGM08] – the latency of the benchmarks decreases
by a factor of roughly 2.5 (create files) and 3.5 (copy files).

7.6.5 Financial Evaluation
In this section we analyze the costs associated with the deployment and operation of C2FS in
public clouds. All calculations are based on the providers costs for storage, computing (pay-
as-you-go hourly), outbound data transfer and invoked operations [EC2b, EH-, GS-, RS-a, RS-
b, WA-, S3-], ignoring some providers limited free or promotional offers.

Figure 7.9 shows the costs associated with operating and using C2FS. The operating costs
of C2FS comprise mainly running the coordination service, which, for our setup with fc = 1,
requires four VMs deployed either in a single cloud or in a CoC. Figure 7.9(a) considers the two
instance sizes (as defined in Amazon EC2) and the price of renting four of them in Amazon EC2
or in the CoC (one VM of similar size for each provider), together with the expected storage (in
number of 1KB-metadata tuples) and processing capacity (in read/write 1KB-kops/s) of such
DepSpace setup.6 As can be seen in the figure, a setup with four Large instances would cost
less than $1200 per month while such setup in EC2 would cost $749. This difference of $451
can be seen as the operating cost of tolerating one provider failure in our C2FS setup, and
this overhead comes from the fact that Rackspace and Elastichosts charge almost 100% more
than EC2 and Azure for the same expected VM instance. Moreover, such costs can be factored

6Measured in our local cluster, with VMs with similar capacity.

TClouds D2.2.4 Page 92 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

VM Instance EC2 CoC Storage Processing
Large $24.96 $39.60 7M files 10 kops/s
Extra Large $51.84 $77.04 15M files 15 kops/s

(a) Operating costs (day) and expected DepSpace capacity.

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 0 5 10 15 20 25 30

C
o

s
t

(m
ic

ro
d

o
lla

r)

File size (MB)

read
S3 read

write
S3 write

cached read

(b) Cost per operation (log scale).

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30
C

o
s
t/

h
 (

m
ic

ro
d

o
lla

r)
File size (MB)

C2FS
Amazon S3

(c) Cost per file per hour.
Figure 7.9: The operating and usage costs of C2FS. The costs include outbound traffic generated by the
coordination service protocol for metadata tuples of 1KB.

among the users of the system, e.g., for one dollar per month, 2300 users can have a C2FS setup
with Extra Large replicas for the coordination service. Finally, this explicit cost of operating
the system can be eliminated if the organization using C2FS hosts the coordination service in
its infrastructure (our Local setup).

Besides the operating costs, each C2FS user has to pay for its usage (operation and storage)
of the file system. Figure 7.9(b) presents the cost of reading a file (open for read, read whole file
and close) and writing a file (open for write, write the whole file, close) in C2FS and S3 (e.g.,
using S3FS), together with the cost of reading a cached file in C2FS. The cost of reading a file
is the only one that depends on the size of data, since providers charge around $0.12 per GB of
outbound traffic, while inbound traffic is free. Besides that, there is also the cost associated with
the getMetadata, used for cache validation, which is 11.32 microdollars (µ$11.32). This is
the only cost of reading a cached file. The cost of writing is composed by metadata and lock
service operations (see Figure 7.4), since inbound traffic is free. Notice that the design of C2FS
exploits these two points: unmodified data is read locally and always written to the cloud for
maximum durability.

Storage costs in C2FS are charged per version of the file created. Figure 7.9(c) shows the
cost/file/hour in C2FS considering the use of erasure codes and preferred quorums [BCQ+11].
When comparing with Amazon S3 alone, the storage costs of C2FS are roughly 50% more.

The storage costs are important because they can be used to define when it is cost-effective
to run the garbage collector to delete old files. Running the garbage collector imposes at least
the cost of listing the user objects and deleting the ones presenting file versions that are not
needed anymore. Currently, two clouds charge µ$1 per list operation, while two others allow
these operations for free. All clouds support free deletes. So, running the garbage collector
costs µ$2, independently of the number of files to be deleted.

Storing data in the CoC costs µ$0.2 MB/hour (three clouds storing half MB each), con-

TClouds D2.2.4 Page 93 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

sequently, it is economically advantageous to run the garbage collector only when the cost of
storing old and unnecessary versions in the next hour is bigger than the cost of running the GC.
In our setup, this happens when this unneeded storage reaches 100 MB×hours. This means that
after writing 100MB of data in one hour, the system should run the GC, or after keeping 10MB
for 10 hours, it is better to run the GC instead of paying for one more hour. Notice that in the
second case it makes sense to wait to run the GC, to dilute its cost by reclaiming more storage.

7.7 Related Work

The distributed file systems literature is vast. Here we discuss some of the works we think are
relevant to C2FS.
Cloud-of-clouds storage. The use of multiple (unmodified) cloud storage services for data
archival was first described in RACS [ALPW10]. The idea is to use RAID-like techniques to
store encoded data in several providers to avoid vendor lock-in problems, something already
done in the past, but requiring server code in the providers [KAD07a]. DepSky [BCQ+11]
integrates such techniques with secret sharing and Byzantine quorum protocols to implement
single-writer registers tolerating arbitrary faults of storage providers. ICStore [BCE+12] showed
it is also possible to build multi-writer registers with additional communication steps and tol-
erating only crash faults/unavailability of providers. The main difference between these works
and C2FS is the fact they provide a basic storage abstraction (a register), not a complete file
system. Moreover, they provide strong consistency only if the underlying clouds provide it,
while C2FS uses a consistency anchor (a coordination service) for providing strong consistency
independently of the guarantees provided by the storage clouds.
Cloud-backed file systems. S3FS [S3F] and S3QL [S3Qa] are two examples of cloud-backed
file systems. Both these systems use unmodified cloud storage services (e.g., Amazon S3) as
their backend storage. S3FS employs a blocking strategy in which every update on a file
only returns when the file is written to the cloud, while S3QL writes the data locally and later
pushes it to the cloud. An interesting design is implemented by BlueSky [VSV12], another
cloud-backed file system that can use cloud storage services as a storage backend. BlueSky
provides a CIFS/NFS proxy (similar to several commercially available cloud storage gateways)
to aggregate writings in log segments that are pushed to the cloud in background, implementing
thus a kind of log-structured cloud-backed file system. These systems differ from C2FS in many
ways, but mostly regarding their dependency of a single cloud provider and lack of controlled
sharing support.
Untrusted cloud providers. There are many recent works providing layers of integrity pro-
tection over untrusted storage services. SUNDR [LKMS04] is a file system that ensures fork-
consistency over untrusted storage elements. In practice, such file system allows verification of
stored files integrity (i.e., if they contain only the updates from authorized clients) even if the
storage server misbehaves. Depot [MSL+10] extended these ideas and applied them to cloud
storage services. Another recent system, Iris [SvDJO12], provides a file system interface that
uses the cloud as storage backend with the help of a proxy, like BlueSky. The downside of
these techniques is that they cannot be used in cloud storage services as they require specific
code to run in the cloud and do not tolerate unavailability of providers, but rely on collaborating
(correct) clients for data recovery in case of data loss/corruption.
Wide-area file systems. Starting with AFS [HKM+88], many file systems were designed for
geographically dispersed locations. AFS introduced the idea of copying whole files from the
servers to the local cache and making file updates visible only after the file is closed. C2FS

TClouds D2.2.4 Page 94 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

adapts both these classical features for a cloud-backed scenario.
File systems like Oceanstore [KBC+00], Farsite [ABC+02] and WheelFS [SSZ+09] use

a small and fixed set of nodes as locking and metadata/index service (usually made consistent
using protocols like Paxos [Lam98] and PBFT [CL02]). Similarly, C2FS requires a small
amount of computing nodes to run a coordination service and simple extensions would allow
C2FS to use multiple coordination services, each one dealing with a subtree of the namespace
(improving its scalability) [ABC+02]. However, contrary to these systems, C2FS requires only
these “explicit” servers, since the storage cloud services replace the storage nodes.
Parallel file systems. The idea of separating data and metadata storage is used in many parallel
file systems (e.g., Hadoop FS [SKRC10], Ceph [WBM+06], PanFS [WUA+08]) for isolating
the performance of metadata and data operations. Moreover, such an architecture allows the
splitting and distribution of blocks/files through many data nodes for achieving parallel I/O and
increasing data transfer bandwidth in tightly coupled clusters. In C2FS, we separate data and
metadata not only for performance reasons, but also for flexibility and consistency.

7.8 Conclusions
C2FS is a cloud-backed file system that can be used for backup, disaster recovery and con-
trolled file sharing, without requiring trust on any single cloud provider. A key enabling factor
of our design is the reuse of TClouds core sub-systems – DepSky (Resilient Object Storage)
and DepSpace (State Machine Replication, more specifically, BFT-SMART) –, achieving high
levels of dependability without having to develop complex fault-tolerant protocols for data and
metadata storage. This allowed us to focus on the interaction between these systems to design
the best possible system given our goals: security, consistency and cost-efficiency.

TClouds D2.2.4 Page 95 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Chapter 8

Towards Privacy-by-Design Peer-to-Peer Cloud
Computing

Chapter Authors:
Leucio Antonio Cutillo (POL).

8.1 Introduction

The Everything as a Service paradigm proposed by Cloud computing is changing de facto the
way Internet users, such as individuals, institutions and companies, deal with data storage and
computation. Globally deployed cost-efficient and scalable resources are made available on
demand, allowing users to access them via lightweight devices and reliable Internet connection.
In recent reports, Comscore pointed out that 9.4 million new smartphones were acquired in
EU51 in December 2012, and 136 million people now have a smartphone in this area [Com13a].
Moreover, 92% of the world’s data has been created in just the last two years, and right now
popular Cloud platforms such as YouTube store 72 hours of new videos every minute [Com13b].

Evidence shows that the benefits from apparently unlimited resources come at extremely
high security and privacy costs [SK11]. User identity, location and activity information is con-
stantly uploaded and synchronized at Cloud providers’ facilities through mobile services, online
social networks, search engines and collaborative productivity tools. Such data can be misused
both by the provider itself and by attackers taking control of it. Additionally, due to the huge
user base, Denial of Service (DoS) attacks reveal to be more effective.

While dependability can be addressed by running several service instances on different
Clouds at increased costs, therefore moving to the so-called Cloud-of-clouds, security and
privacy vulnerabilities still remain open issues and have a severe impact on user trust in the
Cloud [AI12].

Adoption of an appropriate encryption mechanism may appear a viable solution to pro-
tect user privacy. Unfortunately, securing outsourced data and computation against untrusted
Clouds through encryption is cost-unfeasible [CS10], being outsourcing mechanisms up to sev-
eral orders of magnitude costlier than their non-outsourced, locally run, alternatives. Moreover,
the simple use of encryption to provide data confidentiality and integrity fails to hide sensitive
information such as user identity and location, session time and communication traces.

However, even at the presence of fine-grained, cost-effective security and privacy protection
tools based on encryption, current Cloud solutions would still suffer from a main orthogonal
problem: the intrinsic contrast between their business model and user privacy. As a matter
of fact, all current Cloud services are run by companies with a direct interest in increasing
their user-base and user demand; service level agreements are often stringent to the user, and

1UK, Germany, France, Italy and Spain.

TClouds D2.2.4 Page 96 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

countermeasures against privacy violations are usually taken a-posteriori, once the violation
has been detected. Given the promising public Cloud service market size, which is estimated
to grow from $129.9 billion in 2013 to $206.6 billion in 2016 [Gar12], Cloud providers are not
likely to address this problem in the near future.

In this chapter, we assume the protection of user privacy against the omniscient Cloud
provider to be the main objective for Clouds, and we present a sketch for our novel approach to
Cloud-of-clouds services that helps to better protect the security of users while allowing for the
full scale of operations they are used to from existing Clouds.

The main contributions of this chapter are two: (i) to facilitate confidentiality and privacy
by avoiding potential control from any central omniscient entity such as the Cloud provider
through a distributed architecture for Cloud-of-clouds, where each Cloud user is a Cloud ser-
vice provider too; (ii) to leverage on the real life trust relationships among Cloud users to lower
the necessity for cooperation enforcement with respect to Cloud service availability. As an ad-
ditional objective, the protection of the user’s privacy against malicious users is also addressed.

The proposed architecture aims at preserving the user’s privacy from the outset, and targets
privacy-by-design.

This chapter is organized as follows: section 8.2 introduces the main security objectives we
expect to meet with our novel approach, which is presented in section 8.3 and detailed in section
8.4; section 8.5 provides a preliminary evaluation of the approach against such objectives, while
section 8.6 presents the related work. Finally, section 8.7 concludes this chapter and outlines
future work.

8.2 Security objectives
We assume the protection of the user’s privacy against the omniscient Cloud service provider to
be the main objective for Cloud services.

Privacy. Privacy is a relatively new concept, born and evolving together with the capability
of new technologies to share information. Conceived as “the right to be left alone” [WB90]
during the period of newspapers and photographs growth, privacy now refers to the ability of
an individual to control and selectively disclose information about him.

The problem of users’ data privacy can be defined as the problem of usage control [PS02],
which ensures access control together with additional control on the later usage of the data,
even once information has already been accessed. Access to the content of user-generated data
should only be granted by the user directly, and this access control has to be as fine-grained as
specified by the user.

In addition, communication privacy calls for inference techniques aiming at deriving any
type of information with regard to: (1) anonymity, meaning that users should access resources
or services without disclosing their own identities; (2) unobservability, i.e. the requirement that
no third party should gather any information about the communicating parties and the content
of their communication; (3) unlinkability, which requires that obtaining two messages, no third
party should be able to determine whether both messages were sent by the same sender, or to
the same receiver; (4) untraceability, which demands that no third party can build a history
of actions performed by arbitrary users within the system; in other words, it demands both
anonymity and unlinkability.

In summary, the objective of privacy is to hide any information about any user at any time,
even to the extent of hiding their participation and activities within the Cloud service in the
first place. Moreover, privacy has to be met by default, i.e. all information on all users and their

TClouds D2.2.4 Page 97 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

actions has to be hidden from any other party internal or external to the system, unless explicitly
disclosed by the users themselves.

Integrity. In Cloud services, any unauthorized modification or tampering of user-generated
information has to be prevented. This encompasses the protection of real identity of users
within the Cloud platforms. In this sense, the definition of integrity is extended in comparison
with the conventional detection of modification attempts on data. Moreover, problems with
integrity of user profiles and their contents may have devastating impact on the objectives put
forth with respect to the privacy of Cloud users. Since the creation of profiles in popular Cloud
services is easy, protection of real identities is insufficient in today’s platforms. In particular,
providers offering Cloud services for free are often unable (and perhaps even not interested in)
to ensure that a profile is associated to the corresponding individual from the real world.

Availability. The objective of availability for Clouds aims at assuring the robustness of the
services in the face of attacks and faults. Due to their exposure as single points of failure,
centralized Cloud services are exposed to denial-of-service attacks, which directly impact the
availability of user’s data.

Also distributed services, which are implemented in a decentralized way, possibly via peer-
to-peer systems, or which follow other types of service delegation, may be vulnerable to a series
of attacks against availability as well. These attacks include black holes, aiming at collecting
and discarding a huge amount of messages; selective forwarding, where some traffic is for-
warded to the destination, but the majority is discarded; and misrouting, which aims to increase
the latency of the system or to collect statistics on the network behavior. In any case, attacks on
distributed Cloud systems are more effective in case of collusion amongst malicious users or in
the presence of Sybil nodes controlled by the attacker, which is not the case for the centralized
Cloud providers.

8.3 A new approach
Our system provides Cloud services based on a peer-to-peer architecture. The peer-to-peer
architecture meets the privacy concerns by avoiding potential control and misuse of user’s data
from the omniscient Cloud service provider or attackers taking control of it. Furthermore,
cooperation among peers is enforced by leveraging on the real life trust relationships among
the user themselves. Each participant is associated to a User Identifier (UId) and joins the
network from multiple devices associated to different Node Identifiers (NIds). Resources of
the participant’s devices are available to the participant himself, and to the participant’s trusted
contacts and contacts-of-contacts with the participant’s consent.

8.3.1 System Overview
Our system consists of three main components (Fig. 8.1): a Web of Trust (WoT), a Distributed
Hash Table (DHT), and a series of Trusted Identification Services (TISs).

The WoT provides the basic distributed structure used to supply Cloud services, the DHT
provides a basic dictionary service to perform lookups, finally each TIS serves the purpose of
user authentication.

Web of Trust. The WoT (Fig. 8.2) is a digital mapping of the trust relationships users entertain
in their real life, and serves the purpose of Cloud service provisioning. In a user’s WoT view,

TClouds D2.2.4 Page 98 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Dictionary Service

Cloud Services
W

e
b
 o

f
T

ru
st

D
H

T
TIS1

T
IS

 N
e
tw

o
rk

Trusted
Identification

Service

Figure 8.1: Main components of the system: Distributed Hash Table, Web of Trust, and Trusted
Identification Service network.

each user’s trusted contact acts as a Trusted Cloud Service Provider (TCSP), and provides the
user with storage and computing resouces. Such resources can be allocated both on the TCSP
hardware and in that one of its respective TCSPs ones. However, since we don’t assume tran-
sitivity of trust, a TCSP of a user’s TCSP is considered an Untrusted Cloud Service Provider
(UCSP). To preserve both the consumer’s privacy and the trust edges in the WoT, UCSP re-
sources are transparently accessed through TCSP only. Finally, in case a TCSP is offline, the
set of UCSP resources accessible through that TCSP is still reachable through a set of Auxiliary
Access Points (AAPs), which lead to the TCSP contacts through random walks on the WoT
graph.

Trusted Cloud Service Provider

Web of Trust

B

E G

V

A

Untrusted Cloud Service Provider

B’s Auxiliary Access point

D

C

V’s Auxiliary Access point

Trust link

Figure 8.2: The Web of Trust Component: in white, Trusted Cloud Service Providers (trusted
contacts) for V; in light gray, Untrusted Cloud Service Providers for V . Node B is offline, part
of the services B provides to V are still accessible from B’s Auxiliary Access Points D and E .
Random walks in light gray forward V’s request for B’s services to B’s direct contacts A and C
without revealing the real requester V’s identity.

DHT. The DHT is implemented by an overlay on top of the internet where peers are arranged
thanks to their NId and serves the purpose of TCSP lookup. The DHT is maintained by the
users’ nodes and provides three distinct lookup services: it returns IP addresses associated to
a target NId; it returns a list of AAP for a given UId; it returns the UId associated to a target
TCSP identity, such as the user’s full name.

TClouds D2.2.4 Page 99 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Therefore, the DHT allows for building the WoT overlay and addressing the TCSP services.

TIS network. TISs are independent trusted parties serving the purpose of user and device
authentication. A TIS provides each user with a certified UId and a set of certified NIds, one for
each user device. Any TIS computes identifiers starting from the user’s real identity by running
the same algorithm.

TISs are offline entities contacted at the first join and do not play any role neither in the
communication between users nor in the Cloud service provisioning. Consequently, they do not
break the main purpose of decentralization.

8.3.2 Orchestration

A newcomer generates a series of public-private key pairs, contacts a TIS and obtains as an
answer his User- and Node- Identifiers, together with certificates associating each identifier
with a public key. The newcomer device joins the DHT thanks to the Node Identifier, and the
newcomer starts looking for trusted contacts from a series of properties such as the contact
name. As an answer, the newcomer receives a set of AAPs for different User Identifiers, and
starts retrieving publicly available profile data associated to each identifier through the respec-
tive AAPs. Once identified the correct trusted contact, the newcomer sends a contact request to
the AAPs which is forwarded along a random walk on the WoT graph. Replies are forwarded
back along the same path. A new trusted link is therefore established in the WoT graph. Contact
requests contain available devices Node Identifiers and a series of secrets to access their run-
ning services. The newcomer queries the P2P system for the IP addresses of each device, and
establishes one-hop connections with them. The newcomer then sends to the trusted contact a
random walk request, which will create a random walk ending to an AAP for the newcomer.
By repeating the abovementioned process, the newcomer adds further real-life trusted contacts
and creates a random walk for each of them. The newcomer’s trusted contacts act as TCSPs and
provide services encompassing Infrastructure as a Service (IaaS), Platform as a Service (PaaS)
and Software as a Service (SaaS).

8.4 Operations

In the following, we sketch the operations implementing the distributed Cloud-of-Clouds, which
consist of: (i) account creation, (ii) trusted contact establishment, and (iii) Cloud service access.

Each operation calls for the execution of a series of secure protocols aiming at obtaining cre-
dentials, building and keeping the consistency of the WoT and DHT overlays and establishing
secure communication channels.

Throughout the description of these protocols, {M}SKX
denotes a message M being signed

by user X ’s private key K −X , and EKY {M} denotes the message M being encrypted with the
user Y’s public key K +

Y
2. The distinct identifiers of users are associated with keypairs: while

NX =
{

N −X ,N +
X
}

denotes the keypair for the Node Id, UX =
{

U−X ,U+
X
}

denotes the keypair
for the User Id, and WX =

{
W −
X ,W +

W
}

denotes the keypair for the random walk Id of node X .

2More precisely, session keys are used to encrypt the payload. Such keys are advertised at the beginning of the
message encrypted with the target Node Id public key.

TClouds D2.2.4 Page 100 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

8.4.1 Account creation
In order to create an account, a newcomer V generates a series of keypairs UV , {NV,0≤i≤n},
{WV,0≤j≤m} to be associated, respectively, to his personal identity, his n devices and m ran-
dom walks. All public keys are sent to the TIS, together with V’s identity record nameV =<
firstName, . . . , nationality > and a proof of identity ownership3.

Starting from a series of secrets MKU , MKN , MKW , the TIS computes V’s User Identifier
UIdV as a keyed hash function hMK applied to nameV . Similarly, the TIS also computes a set
of n node and m random walk identifiers by using MKN , MKW respectively, and applying the
keyed hash function on a concatenation of nameV and an integer 0 ≤ p ≤ n.

Finally, each identifier is sent back to V together with a certificate associating such identifier
to a different user-generated public key. The certificate also contains further information on the
TIS, a timestamp and an expiration time. Additional meta identifiers are sent back to V . Each
identifier is computed as a well known hash function of a possible combination of the values in
nameV such as h (firstName, nationality).

Once received the certified identifiers, V can join the P2P network.

Trusted contact establishment. The newcomer V needs to build his web of trust to access
(and provide) Cloud services from his node pool. To find a trusted contact U , V hashes a subset
of properties of nameU and looks for this meta identifier on the DHT. As an answer, all User
Identifiers UIdi associated to such meta identifier are provided to V , which triggers another
request for each of them. A list of random walk identifiers WIdij and corresponding auxiliary
access points is retrieved for each UIdi. User V then triggers a profile request to the AAPs.
Requests are routed along the random walks thanks to WIdij; publicly available profile data
is served by each UIdi (or one of his trusted contacts) and is forwarded back along the same
path. At the reception of profile data, V selects the correct target UIdU and sends him a contact
request containing V’s User- and Nodes- Identifiers together with the TIS certificates and a list
of available Cloud services running at V’s node pool. Again, the contact request is sent to U’s
AAPs and is routed along the random walks. User U can accept the request and reply directly
to V .

Once a bidirectional trust link has been built, V can access Cloud services offered by U , and
vice-versa.

Cloud service access. The first Cloud service V accesses is the Communication Obfus-
cation as a Service (COaaS), where V creates a random walk of q hops starting from U .
A random walk request RWR message is sent to U and forwarded along the WoT graph.
Such RWR contains a walk token WTok, a recursively signed Time To Live message and
a signed random number rndSW−

. The WTok contains the jth random walk Id certificate
Cert (WIdV,j) and an expiration time signed with W −. At each hop, a user in the random
walk decreases the TTL and selects a random contact to forward the request. When TTL = 0,
the current node G verifies the signature on the random number is associated to Cert (WIdV,j),
and registers the pair 〈DHTkey,DHTvalue〉 on the DHT, where DHTkey = WIdV,j and
DHTvalue = [WTok,Cert (NIdG)]SN−G

. The presence of rndSW−
in the DHT storage re-

quest for 〈DHTkey,DHTvalue〉 triggered by G poses as an authorization.
Once such association has been registered, a confirmation is routed back according to

WIdV,j along the random walk. At the same time, V stores a new association〈
UIdV , [Cert (UIdV) , Cert (WIdV,j) , exptime]SU−V

〉
3Such proof can consist of a secret shared OOB after face-to-face identity verification.

TClouds D2.2.4 Page 101 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

in the DHT.
Storage of

〈
metaIdV , [Cert (metaIdV) , Cert (UIdV) , exptime]SU−V

〉
is optional and may

happen at any time.
A series of IaaS, SaaS, PaaS services can be provided, with the user consent, to the user’s

contacts in addition to the user himself. User U has n real/virtual nodes in the DHT which
form U’s node pool and provide basic services like COaaS and storage. Among such nodes,
those with higher resources run an hypervisor and instantiate virtual machines, which may be
connected to form more complex virtual data centers.

Within the MapReduce framework, trust-based parallel processing is achieved by split-
ting problems in sub-problems and distributing them to trusted user maintained nodes. Sub-
problems may further be divided and dispatched along the WoT.

As shown in Fig. 8.3, among the series of services U provides to V , part of them may not
be run directly on U’s nodes. U may in fact advertise services provided to him by his trusted
contact Z . In this case, U acts as a proxy for V . When all U’s nodes are disconnected, V can
still access services running at Z nodes by contacting U’s AAPs.

Z

Cloud service

s1

s3

V

Available nodes

DHT

Trusted
Identification

Service

TISj

TIS1

TIS
Network

@User Id

@Walk Id

@Node Id

Web of Trust

s2

n1
nn

n2

U

Figure 8.3: Availability of Cloud services provided by user U to V: in white, available services
running at U’s nodes; in black, unavailable ones; in gray, services running at Z nodes available
for U which U respectively provides, as a proxy, to V .

8.5 Preliminary Evaluation
A complete performance evaluation of the proposed system is not available at this point, as we
are describing work in progress. In the following we however give an overview to evaluate the
compliance with respect to the security objectives we required in section 8.2.

Integrity. The one-to-one correspondance between a user’s identity and his User Identifier is
ensured by the TIS. This prevents malicious users from creating fake identities, or mounting
impersonation attacks and disrupt the WoT. Even when a user starts the account creation pro-
cess with two different TISs, since the different MK used for identifier computation are shared
within the TIS network, such user will receive the same identifiers.

A newcomer V is prevented from sending a trusted contact request to AAPs which are not
those associated to the legitimate target U . The association between a certified meta identifier
and a certified UId cannot be stored in the DHT in case of mismatch between the public keys
contained in both certificates. The same applies to the association between a UId and a WId.

TClouds D2.2.4 Page 102 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Finally, the association between a certified WId and a certified AAP Nid cannot be stored
without the proof such AAP is at the end of a random walk originated at the legitimate V . Such
proof is represented by rndSW−

.
Since the association between a walk identifier and the AAP Node Identifier is publicly

available, collusion between DHT nodes and unlegitimate AAPs can be detected and malicious
association removed from the DHT.

Privacy. The proposed solution guarantees anonymity, since a user can choose to skip the
registration between any of his meta identifiers and his UId. Computation of the victim’s UId
cannot be performed with dictionary attacks due to the adoption of a keyed hash function to
compute identifiers. Even brute force attacks to guess a victim’s UId fail in case such victim
does not provide publicly available information on his identity.

An anonymous user V may still find and establish a trusted contact with a non anonymous
user U . However, when both V and U are anonymous users, trusted contact establishment
succeeds only after UIds have been exchanged out-of-band. Currently, a TIS can detect if a
user is participating in the system or not. We are investigating further distributed authentication
mechanisms to overcome this limitation.

Hop-by-hop communication integrity and confidentiality is ensured by signing each mes-
sage with the sender’s node private key and encrypting the concatenation of message and sig-
nature with the receiver’s node public key. Eavesdroppers are therefore unable to detect any
information on parties’ identifiers and communication content. Additionaly, in case of trusted
contact establishment or asynchronous communication, end-to-end communication integrity
and confidentiality is ensured by signature and encryption operations based on keypairs associ-
ated to User Identifiers.

In case TCSPs provide storage space, a user V’s data is stored at the TCSP U in an encrypted
and partitioned form. In fact, each user is considered honest but curious.

User identity cannot be linked to IP addresses since the relationship between Node Identi-
fiers and User Identifier is not stored in the DHT and is disclosed to trusted contacts only at the
act of contact establishment.

Nodes participating in serving random walks cannot derive any information on the originator
of the walk: given a WId, it is impossible to retrieve any information on any other WId related
to the same user, consequently, if present, any publicly available information on such user.

Finally, no entity in the system can derive the composition of the WoT, since a user’s knowl-
edge of the WoT is limited to his trusted contacts only.

Availability. Adoption of certified identifiers prevents sybil and denial of service attacks.
Malicious nodes fail in perpetrating DHT poisoning due to the presence of signatures in each
record they store. Furthermore, due to the parallelism of DHT lookup and storage operations, a
malicious peer dropping requests does not impact provisioning of results.

8.6 Related Work

To the best of our knowledge, no work in literature proposes the adoption of decentralized
architectures to preserve Cloud users’ privacy. On the contrary, a series of work aims at moving
towards P2P to increase Cloud service availability.

The work in [XSZS09] proposes a P2P Cloud solution to provide a distributed data stor-
age environment to address the problem of bottlenecks due to central indexes in Cloud stor-
age systems. In Cloud-to-Cloud [GKW11], Cloud service providers participate in a pool of

TClouds D2.2.4 Page 103 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

computer resources. Resource requests which cannot be provisioned by a particular Cloud
service provider can be met from such a shared ecosystem of resources in a seamless man-
ner. In [MTT12], authors present the design of P2P MapReduce, an adaptive framework which
exploits a P2P model to allow for MapReduce in Cloud-of-clouds environment. Compared
to centralized implementations of MapReduce, such solution provides resiliency against node
churn and failures.

Researchers also got inspired from P2P systems to propose new way of looking up for
resources in Cloud environments. Cloud peer [RZW+10] creates an overlay network of virtual
machines to address service discovery and load-balancing. VM instances update their software
and hardware configuration to a DHT supporting indexing and matching of multidimensional
range, so that provisioning software can search for and discover them. Authors in [BMT12]
propose a distributed IaaS Cloud system using gossip based protocols to manage a pool of peers
without coordinators. Users can request a fraction of the available resources matching a given
query. Authors in [LY12] propose an hybrid overlay composed by a structured P2P system
with an unstructured one to support multi-attribute range query. The overlay is organized in
clusters, each cluster being composed by resource groups, in turn composed by peers with the
same resources.

The work which is closest to our approach has been presented in Safebook [CMS09], a
decentralized architecture for privacy preserving online social networks. As in our solution,
Safebook relies on the trust relationships among users to provide P2P services. As opposed to
Safebook, our solution does not depend on a single TIS, allows multiple user’s nodes to join the
network at the same time, and provides higher privacy protection in terms of communication
untraceability thanks to the adoption of random walk based routing. Moreover, while Safebook
exploits direct contacts resources to provide a limited range of social network services, our
solution exploits the entire WoT and is conceived to provide a wide range of Cloud services.

8.7 Conclusion and Future Work
In this chapter, we proposed a decentralized approach to protect critically sensitive user data
against the potential control of malicious omniscient Cloud service providers and attackers tak-
ing control of them. The approach leverages on existing trust among users to provide Cloud
services and anonymize traffic. Our solution consists on a Web of Trust among users, who also
play the role of Cloud service providers. User nodes take part in a DHT and run Cloud ser-
vices, which may be accessed directly or indirectly, as a function of the WoT shape and with the
user consent. Resilience against offline Cloud providers is achieved through Auxiliary Access
Points for those providers’ services. The sensitive information describing WoT users and their
relationships is protected through encryption and anonymization techniques similar to onion
routing, applied to random walks on the WoT graph.

As future work, we plan to develop a full model of the system in order to study the service
availability. We have already started to develop a prototype based on the new WebRTC4 tech-
nology, which allows to build a P2P network from popular web browsers. We plan to complete
our prototype and integrate it with popular IaaS solutions such as OpenStack and SaaS such as
Hadoop. Since trust between users does not correspond to trust on their hardware, we plan to
investigate new mechanisms to guarantee the execution and correctness of a sequence of opera-
tions at the Cloud side. Finally, we also plan to evaluate the tradeoff between usage control and
anonymity through new distributed collaborative privacy policy enforcement schemes. [CL13]

4http://www.webrtc.org

TClouds D2.2.4 Page 104 of 118

http://www.webrtc.org

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

Bibliography

[AA91] D. Agrawal and A. F. Abadi. An efficient and fault-tolerant solution for dis-
tributed mutual exclusion. ACM Transactions on Computer Systems, 9(1):1–
20, February 1991.

[ABC+02] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie
Chaiken, John R. Douceur, Jon Howell, Jacob R. Lorch, Marvin Theimer, and
Roger P. Wattenhofer. Farsite: Federated, available, and reliable storage for an
incompletely trusted environment. In Proc. of the 5th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’02), December 2002.

[ABDL07] Nitin Agrawal, Willian J. Bolosky, John R. Douceur, and Jacob R. Lorch. A
five-year study o file-system metadata. In Proc. of the 5th USENIX Conference
on File and Storage Technologies – FAST’07, 2007.

[ACKL08] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. Byzantine replication
under attack. In Proceedings of the IEEE/IFIP 38th International Conference
on Dependable Systems and Networks, pages 197–206, June 2008.

[ADD+10] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru, J. Olsen,
and D. Zage. Steward: Scaling byzantine fault-tolerant replication to wide
area networks. IEEE Transactions on Dependable and Secure Computing,
7(1):80–93, 2010.

[AEMGG+05a] Michael Abd-El-Malek, Gregory Ganger, Garth Goodson, Michael Reiter, and
Jay Wylie. Fault-scalable Byzantine fault-tolerant services. In Proceedings of
the ACM Symposium on Operating Systems Principles, 2005.

[AEMGG+05b] Michael Abd-El-Malek, Gregory Ganger, Garth Goodson, Michael Reiter, and
Jay Wylie. Fault-scalable Byzantine fault-tolerant services. In Proceedings
of the 20th ACM Symposium on Operating Systems Principles, pages 59–74,
October 2005.

[AI12] Cloud Security Alliance and ISACA. Cloud computing market ma-
turity, 2012. http://www.isaca.org/Knowledge-Center/
Research/ResearchDeliverables/Pages/
2012-Cloud-Computing-Market-Maturity-Study-Results.
aspx.

[ALPW10] Hussam Abu-Libdeh, Lonnie Princehouse, and Hakim Weatherspoon. RACS:
A case for cloud storage diversity. Proc. of the 1st ACM Symposium on Cloud
Computing, pages 229–240, June 2010.

[Ama06] Amazon Web Services. Amazon Elastic Compute Cloud (Amazon EC2),
2006. http://aws.amazon.com/ec2/.

TClouds D2.2.4 Page 105 of 118

http://www.isaca.org/Knowledge-Center/Research/ResearchDeliverables/Pages/2012-Cloud-Computing-Market-Maturity-Study-Results.aspx
http://www.isaca.org/Knowledge-Center/Research/ResearchDeliverables/Pages/2012-Cloud-Computing-Market-Maturity-Study-Results.aspx
http://www.isaca.org/Knowledge-Center/Research/ResearchDeliverables/Pages/2012-Cloud-Computing-Market-Maturity-Study-Results.aspx
http://www.isaca.org/Knowledge-Center/Research/ResearchDeliverables/Pages/2012-Cloud-Computing-Market-Maturity-Study-Results.aspx

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

[AW96] Y. Amir and A. Wool. Evaluating quorum systems over the internet. In Pro-
ceedings of the 26th Annual International Symposium on Fault-Tolerant Com-
puting (FTCS ’96), 1996.

[AWS11] AWS Team. Summary of the Amazon EC2 and Amazon RDS service dis-
ruption in the US east region. http://aws.amazon.com/message/
65648/, 2011.

[BACF08] Alysson Bessani, Eduardo Alchieri, Miguel Correia, and Joni S. Fraga.
DepSpace: a Byzantine fault-tolerant coordination service. In Proc. of ACM
EuroSys’08, pages 163–176, April 2008.

[BAP07] Jeremy Buisson, Francoise Andre, and Jean-Louis Pazat. Supporting adapt-
able applications in grid resource management systems. In Proc. of the
IEEE/ACM Int. Conf. on Grid Computing, 2007.

[BBH+11] W. Bolosky, D. Bradshaw, R. Haagens, N. Kusters, and P. Li. Paxos replicated
state machines as the basis of a high-performance data store. In In the Pro-
ceedings of the 8th USENIX Symposium on Networked Systems Design and
Implementation – NSDI ’11, 2011.

[BCE+12] C. Basescu, C. Cachin, I. Eyal, R. Haas, A. Sorniotti, M. Vukolic, and
I. Zachevsky. Robust data sharing with key-value stores. In Proceedings of the
42nd International Conference on Dependable Systems and Networks - DSN
2012, June 2012.

[BCQ+11] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André, and
Sousa. Depsky: Dependable and secure storage in a cloud-of-clouds. In Proc.
of ACM EuroSys’11, 2011.

[Bec09] C. Beckmann. Google app engine: Information regarding 2 july 2009
outage. https://groups.google.com/forum/?fromgroups=#!
msg/google-appengine/6SN_x7CqffU/ecHIgNnelboJ, 2009.

[Bes11] Alysson Bessani. From Byzantine fault tolerance to intrusion tolerance (a
position paper). In Proc. of the 5th Workshop on Recent Advances in Intrusion-
Tolerant Systems – WRAITS’11 (together with IEEE/IFIP DSN’11), July 2011.

[BGC11] Rajkumar Buyya, Saurabh Garg, and Rodrigo Calheiros. SLA-oriented re-
source provisioning for cloud computing: Challenges, architecture, and solu-
tions. In Proc. of Cloud and Service Computing, 2011.

[BK02] Omar Bakr and Idit Keidar. Evaluating the running time of a communication
round over the internet. In Proceedings of the twenty-first annual symposium
on Principles of distributed computing, PODC ’02, pages 243–252, 2002.

[BK08] Omar Bakr and Idit Keidar. On the performance of quorum replication on
the internet. Technical report, EECS Department, University of California,
Berkeley, Oct 2008.

TClouds D2.2.4 Page 106 of 118

http://aws.amazon.com/message/65648/
http://aws.amazon.com/message/65648/
https://groups.google.com/forum/?fromgroups=#!msg/google-appengine/6SN_x7CqffU/ecHIgNnelboJ
https://groups.google.com/forum/?fromgroups=#!msg/google-appengine/6SN_x7CqffU/ecHIgNnelboJ

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

[BKSS11] Peter Bokor, Johannes Kinder, Marco Serafini, and Neeraj Suri. Efficient
model checking of fault-tolerant distributed protocols. In Proc. of the 41st
IEEE Int’l Conf. on Dependable Systems and Networks – DSN’11, 2011.

[BMT12] Ozalp Babaoglu, Moreno Marzolla, and Michele Tamburini. Design and im-
plementation of a P2P cloud system. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing, SAC ’12, pages 412–417, Trento, Italy,
March 2012. ACM.

[BSA] Alysson Bessani, Joao Sousa, and Eduardo Alchieri. BFT-SMaRt:
High-performance Byzantine-Fault-Tolerant State Machine Replication.
http://code.google.com/p/bft-smart.

[BSF+13] Alysson Bessani, Marcel Santos, Joao Felix, Nuno Neves, and Miguel Correia.
On the efficiency of durable state machine replication. In Proc. of the USENIX
Annual Technical Conference – USENIX ATC 2013, June 2013.

[BT12] Cory Bennett and Ariel Tseitlin. Chaos monkey released in the wild.
http://techblog.netflix.com/2012/07/chaos-monkey-\
released-into-wild.html, 2012.

[Bur06] Mike Burrows. The Chubby lock service. In Proceedings of 7th Symposium
on Operating Systems Design and Implementation – OSDI 2006, November
2006.

[Cac09] Christian Cachin. Yet another visit to Paxos. Technical report, IBM Research
Zurich, 2009.

[Cal11] B. Calder et. al. Windows Azure storage: a highly available cloud storage
service with strong consistency. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles – SOSP’11, 2011.

[CGR07] Tushar Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live
- an engineering perspective (2006 invited talk). In Proceedings of the 26th
ACM Symposium on Principles of Distributed Computing - PODC’07, August
2007.

[Cho12] S. Choney. Amazon Web Services outage takes down Netflix, other
sites. http://www.nbcnews.com/technology/technolog/
amazon-web-services-outage-takes-down-netflix-\
other-sites-1C6611522, 2012.

[CHS01] W. K. Chen, M. Hiltunen, and R. Schlichting. Constructing adaptive soft-
ware in distributed systems. In Proceedings of the 21th IEEE International
Conference on Distributed Computing Systems, April 2001.

[CKL+09] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and T. Riche.
Upright cluster services. In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, pages 277–290, 2009.

TClouds D2.2.4 Page 107 of 118

http://techblog.netflix.com/2012/07/chaos-monkey-\released-into-wild.html
http://techblog.netflix.com/2012/07/chaos-monkey-\released-into-wild.html
http://www.nbcnews.com/technology/technolog/amazon-web-services-outage-takes-down-netflix-\other-sites-1C6611522
http://www.nbcnews.com/technology/technolog/amazon-web-services-outage-takes-down-netflix-\other-sites-1C6611522
http://www.nbcnews.com/technology/technolog/amazon-web-services-outage-takes-down-netflix-\other-sites-1C6611522

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

[CL02] Miguel Castro and Barbara Liskov. Practical Byzantine fault-tolerance and
proactive recovery. ACM Transactions Computer Systems, 20(4):398–461,
2002.

[CL13] Leucio Antonio Cutillo and Antonio Lioy. Towards privacy-by-design peer-
to-peer cloud computing. In 10th International Conference on Trust, Privacy
& Security in Digital Business, TrustBus ’13, Prague, Czech Republic, 2013.

[CLM+08] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield.
Remus: High availability via asynchronous virtual machine replication. In
Proceedings of the 5th USENIX Symposium on Networked Systems Design
and Implementation, pages 161–174, 2008.

[Clo10] Cloud Security Alliance. Top threats to cloud computing v1.0, March 2010.

[CMS09] L.A. Cutillo, R. Molva, and T. Strufe. Safebook: A privacy-preserving online
social network leveraging on real-life trust. IEEE Communications Magazine,
47(12):94–101, December 2009.

[CNS+13] Vinicius Vielmo Cogo, Andre Nogueira, Joao Sousa, Marcelo Pasin, Hans P.
Reiser, and Alysson Bessani. FITCH: Supporting adaptive replicated services
in the cloud. In Proc. of the 13th IFIP International Conference on Distributed
Applications and Interoperable Systems – DAIS’13, June 2013.

[Com13a] Comscore. How technology and analytics drive the mobile market, February
2013. http://www.comscore.com/Insights/Presentations_
and_Whitepapers/2013/How_Technology_and_Analytics_
Drive_the_Mobile_Market.

[Com13b] Comscore. The rise of big data and the internet, January 2013.
http://www.comscore.com/Insights/Presentations_
and_Whitepapers/2013/The_Rise_of_Big_Data_on_the_
Internet.

[Cor12] J. Corbett et al. Spanner: Google’s globally-distributed database. In Proceed-
ings of 10th Symposium on Operating Systems Design and Implementation –
OSDI 2012, 2012.

[CRL03] Miguel Castro, Rodrigo Rodrigues, and Barbara Liskov. BASE: Using ab-
straction to improve fault tolerance. ACM Transactions Computer Systems,
21(3):236–269, August 2003.

[CRM91] Stuart K. Card, George G. Robertson, and Jock D. Mackinlay. The information
visualizer, an information workspace. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, CHI ’91, pages 181–186, New
York, NY, USA, 1991.

[CS10] Yao Chen and Radu Sion. On securing untrusted clouds with cryptography.
In Proceedings of the 9th annual ACM workshop on Privacy in the electronic
society, WPES ’10, pages 109–114, Chicago, Illinois, USA, October 2010.
ACM.

TClouds D2.2.4 Page 108 of 118

http://www.comscore.com/Insights/Presentations_and_Whitepapers/2013/How_Technology_and_Analytics_Drive_the_Mobile_Market
http://www.comscore.com/Insights/Presentations_and_Whitepapers/2013/How_Technology_and_Analytics_Drive_the_Mobile_Market
http://www.comscore.com/Insights/Presentations_and_Whitepapers/2013/How_Technology_and_Analytics_Drive_the_Mobile_Market
http://www.comscore.com/Insights/Presentations_and_Whitepapers/2013/The_Rise_of_Big_Data_on_the_Internet
http://www.comscore.com/Insights/Presentations_and_Whitepapers/2013/The_Rise_of_Big_Data_on_the_Internet
http://www.comscore.com/Insights/Presentations_and_Whitepapers/2013/The_Rise_of_Big_Data_on_the_Internet

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

[CST+10] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Bench-
marking cloud serving systems with YCSB. In SOCC, 2010.

[CWA+09] Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and Mirco
Marchetti. Making Byzantine fault tolerant systems tolerate Byzantine faults.
In Proceedings of the 6th USENIX Symposium on Networked Systems Design
& Implementation, April 2009.

[Dea09] J. Dean. Google: Designs, lessons and advice from building large distributed
systems. In Keynote at the ACM SIGOPS International Workshop on Large
Scale Distributed Systems and Middleware, October 2009.

[Dek12] M. A. C. Dekker. Critical Cloud Computing: A CIIP perspective on cloud
computing services (v1.0). Technical report, European Network and Informa-
tion Security Agency (ENISA), December 2012.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s highly available key-value
store. In Proceedings of 21st ACM SIGOPS Symposium on Operating Systems
Principles, pages 205–220, 2007.

[DKO+84] David DeWitt, Randy Katz, Frank Olken, Leonard Shapiro, Michael Stone-
braker, and David Wood. Implementation techniques for main memory
database systems. In Proc. of the ACM Int. Conf. on Management of Data,
1984.

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the pres-
ence of partial synchrony. J. ACM, 35(2):288–323, April 1988.

[DMM+12] I. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R. Sadre, and A Pras. Inside
Dropbox: Understanding personal cloud storage services. In Proc. of the 12th
ACM Internet Measurement Conference - IMC’12, Nov 2012.

[DPC10] Jiang Dejun, Guillaume Pierre, and Chi-Hung Chi. Autonomous resource
provisioning for multi-service web applications. In Proc. of the WWW, 2010.

[DPSP+11] Tobias Distler, Ivan Popov, Wolfgang Schröder-Preikschat, Hans P. Reiser, and
Rüdiger Kapitza. SPARE: Replicas on hold. In Proceedings of the 18th Net-
work and Distributed System Security Symposium, pages 407–420, February
2011.

[EC2a] Amazon EC2 instance types. http://aws.amazon.com/ec2/
instance-types/.

[EC2b] Amazon EC2 pricing. http://aws.amazon.com/ec2/pricing/.

[EH-] Elastichosts cloud servers pricing. http://www.elastichosts.com/
cloud-servers-quote/.

[Fil] Filebench webpage. http://sourceforge.net/apps/mediawiki/
filebench/.

TClouds D2.2.4 Page 109 of 118

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/pricing/
http://www.elastichosts.com/cloud-servers-quote/
http://www.elastichosts.com/cloud-servers-quote/
http://sourceforge.net/apps/mediawiki/filebench/
http://sourceforge.net/apps/mediawiki/filebench/

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

[fir12] Firebird project. firebirdsql, April 2012.

[FLP+10] D. Ford, F. Labelle, F. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in globally distributed storage sys-
tems. In Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation, 2010.

[FUS] FUSE: File system in user space. http://fuse.sourceforge.net.

[Gar04] Garlan, D. et al. Rainbow: Architecture-based self-adaptation with reusable
infrastructure. Computer, 37(10), 2004.

[Gar12] Gartner. Forecast overview: Public cloud services, worldwide, 2011-2016,
2q12 update, August 2012. http://www.gartner.com/id=2126916.

[GBG+13] Miguel Garcia, Alysson Bessani, Ilir Gashi, Nuno Neves, and Rafael Obel-
heiro. Analysis of OS diversity for intrusion tolerance. Software - Practice
and Experience, 2013. to appear.

[Gel85] David Gelernter. Generative communication in Linda. ACM Transactions on
Programing Languages and Systems, 7(1):80–112, January 1985.

[Gif79] David Gifford. Weighted voting for replicated data. In Proc. of the 7th
ACM Symposium on Operating Systems Principles, pages 150–162, December
1979.

[GKQV10] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. The
next 700 BFT protocols. In Proc. of the 5th European Conf. on Computer
systems – EuroSys’10, 2010.

[GKW11] Ankur Gupta, Lohit Kapoor, and Manisha Wattal. C2c (cloud-to-cloud):
An ecosystem of cloud service providers for dynamic resource provisioning.
In Ajith Abraham, Jaime Lloret Mauri, JohnF. Buford, Junichi Suzuki, and
SabuM. Thampi, editors, Advances in Computing and Communications, vol-
ume 190 of Communications in Computer and Information Science, pages
501–510. Springer Berlin Heidelberg, 2011.

[GMB85] Hector Garcia-Molina and Daniel Barbara. How to assign votes in a dis-
tributed system. Journal of the ACM, 32(4):841–860, October 1985.

[GMS92] Hector Garcia-Molina and Kenneth Salem. Main memory database sys-
tems: An overview. IEEE Transactions on Knowledge and Data Engineering,
4(6):509–516, December 1992.

[GNA+98] Garth Gibson, David Nagle, Khalil Amiri, Jeff Butler, Fay Chang, Howard
Gobioff, Charles Hardin, Erik Riedel, David Rochberg, and Jim Zelenka. A
cost-effective, high-bandwidth storage architecture. In Proc. of the 8th Int.
Conference on Architectural Support for Programming Languages and Oper-
ating Systems - ASPLOS’98, pages 92–103, 1998.

[GOO] Google cloud storage access control. http://developers.google.
com/storage/docs/accesscontrol.

TClouds D2.2.4 Page 110 of 118

http://fuse.sourceforge.net
http://www.gartner.com/id=2126916
http://developers.google.com/storage/docs/accesscontrol
http://developers.google.com/storage/docs/accesscontrol

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

[Gre10] Melvin Greer. Survivability and information assurance in the cloud. In Proc.
of the 4th Workshop on Recent Advances in Intrusion-Tolerant Systems –
WRAITS’10, June 2010.

[GRP11] Rui Garcia, Rodrigo Rodrigues, and Nuno Preguica. Efficient middleware for
Byzantine fault-tolerant database replication. In Proc. of ACM EuroSys’11,
2011.

[Gru03] Andreas Grunbacher. POSIX access control lists on linux. In Proc. of the
USENIX Annual Technical Conference – ATC 2003, June 2003.

[GS-] Google storage pricing. https://developers.google.com/
storage/docs/pricingandterms.

[Ham12] J. Hamilton. Observations on errors, corrections, and trust of dependent
systems. http://perspectives.mvdirona.com/2012/02/26/
ObservationsOnErrorsCorrectionsTrustOfDependentSystems.
aspx, 2012.

[HB09] Urs Hoelzle and Luiz Andre Barroso. The Datacenter as a Computer: An In-
troduction to the Design of Warehouse-Scale Machines. Morgan and Claypool
Publishers, 2009.

[HDS+11] Michael Hanley, Tyler Dean, Will Schroeder, Matt Houy, Randall F. Trzeciak,
and Joji Montelibano. An analysis of technical observations in insider theft of
intellectual property cases. Technical Note CMU/SEI-2011-TN-006, Carnegie
Mellon Software Engineering Institute, February 2011.

[HDV+11] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. A File is Not a File: Understanding the I/O Behav-
ior of apple desktop applications. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles – SOSP’11, October 2011.

[Her87] Maurice Herlihy. Dynamic quorum adjustment for partitioned data. ACM
Transactions on Database Systems, 12(2):170–194, June 1987.

[HKJR10] Patrick Hunt, Mahadev Konar, Flavio Junqueira, and Benjamin Reed.
Zookeeper: Wait-free Coordination for Internet-scale Services. In Proc. of
the USENIX Annual Technical Conference – ATC 2010, pages 145–158, June
2010.

[HKKF95] Y. Huang, C. Kintala, N. Kolettis, and N.D. Fulton. Software rejuvenation:
analysis, module and applications. In Proc. of FTCS, 1995.

[HKM+88] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols,
M. Satyanarayanan, Robert N. Sidebotham, and Michael J. West. Scale and
performance in a distributed file system. ACM Transactions on Computer
Systems, 6(1):51–81, February 1988.

[HT94] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant
broadcasts and related problems. Technical report, Cornell University, 1994.

TClouds D2.2.4 Page 111 of 118

https://developers.google.com/storage/docs/pricingandterms
https://developers.google.com/storage/docs/pricingandterms
http://perspectives.mvdirona.com/2012/02/26/ObservationsOnErrorsCorrectionsTrustOfDependentSystems.aspx
http://perspectives.mvdirona.com/2012/02/26/ObservationsOnErrorsCorrectionsTrustOfDependentSystems.aspx
http://perspectives.mvdirona.com/2012/02/26/ObservationsOnErrorsCorrectionsTrustOfDependentSystems.aspx

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

[HW90] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness con-
dition for concurrent objects. ACM Transactions on Programing Languages
and Systems, 12(3):463–492, July 1990.

[hyp12] Hypersql, hsqldb, April 2012.

[JBo10] JBoss Community. Netty - the java nio client-server socket framework.
http://www.jboss.org/netty, 2010.

[JRS11] F. Junqueira, B. Reed, and M. Serafini. Zab: High-performance broadcast for
primary-backup systems. In Proc. of the Int. Conf. on Dependable Systems
and Networks, 2011.

[KA08] Jonathan Kirsh and Yair Amir. Paxos for system builders: An overview. In
LADIS, 2008.

[KAD07a] Ramakrishna Kotla, Lorenzo Alvisi, and Mike Dahlin. SafeStore: A durable
and practical storage system. In Proceedings of the USENIX Annual Technical
Conference - USENIX’07, 2007.

[KAD+07b] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Ed-
mund Wong. Zyzzyva: Speculative Byzantine fault tolerance. In Proc. of the
21st ACM Symposium on Operating Systems Principles - SOSP’07, October
2007.

[KBB01] B. Kemme, A. Bartoli, and O. Babaoglu. Online reconfiguration in replicated
databases based on group communication. In Proc. of the Int. Conf. on De-
pendable Systems and Networks, 2001.

[KBC+00] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, R. Gummadi
D. Geels, S. Rhea, H. Weatherspoon, C. Wells W. Weimer, and B. Zhao.
OceanStore: An architecture for global-scale persistent storage. In Proceed-
ings of the 9th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, November 2000.

[KBC+12] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon
Kuhnle, Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, and Klaus
Stengel. CheapBFT: resource-efficient Byzantine fault tolerance. In Proc. of
ACM EuroSys’12, 2012.

[KC03] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
Computer, 36(1), 2003.

[KZHR07] Ruediger Kapitza, Thomas Zeman, Franz Hauck, and Hans P. Reiser. Parallel
state transfer in object replication systems. In DAIS, 2007.

[LAB+06] Jacob R. Lorch, Atul Adya, William J. Bolosky, Ronnie Chaiken, John R.
Douceur, and Jon Howell. The SMART way to migrate replicated stateful
services. In Proc. of ACM EuroSys’06, pages 103–115, April 2006.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7), 1978.

TClouds D2.2.4 Page 112 of 118

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

[Lam86] Leslie Lamport. On interprocess communication (part II). Distributed Com-
puting, 1(1):203–213, January 1986.

[Lam91] Kwok-Yan Lam. An implementation for small databases with high availabil-
ity. SIGOPS Operating Systems Rev., 25(4), October 1991.

[Lam98] Leslie Lamport. The part-time parliament. ACM Transactions Computer Sys-
tems, 16(2):133–169, May 1998.

[Les01] Leslie. Paxos made simple. ACM SIGACT News, 32(4):18–25, December
2001.

[LFKA11] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. An-
dersen. Don’t settle for eventual: Scalable causal consistency for wide-area
storage with COPS. In Proc. 23rd ACM Symposium on Operating Systems
Principles – SOSP’11, Cascais, Portugal, October 2011.

[LGG+91] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, and Liuba
Shrira. Replication in the Harp file system. In Proceedings of the ACM Sym-
posium on Operating Systems Principles, 1991.

[LKMS04] Jinyuan Li, Maxwell N. Krohn, David Mazières, and Dennis Shasha. Se-
cure untrusted data repository (SUNDR). In Proc. of the 6th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI ’04), Decem-
ber 2004.

[LMZ10a] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Reconfiguring a state ma-
chine. SIGACT News, 41(1):63–73, March 2010.

[LMZ10b] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Reconfiguring a state ma-
chine. SIGACT News, 41(1), 2010.

[LPGM08] A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller. Measurement and
analysis of large-scale network file system workloads. In Proc. of the USENIX
Annual Technical Conference – ATC 2008, June 2008.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine gen-
erals problem. ACM Transactions on Programing Languages and Systems,
4(3):382–401, July 1982.

[LY12] Kuan-Chou Lai and You-Fu Yu. A scalable multi-attribute hybrid overlay for
range queries on the cloud. Information Systems Frontiers, 14(4):895–908,
2012.

[Met09] Cade Metz. DDoS attack rains down on Amazon cloud. The Register, October
2009. http://www.theregister.co.uk/2009/10/05/amazon_
bitbucket_outage/.

[Mil68] Robert B. Miller. Response time in man-computer conversational transactions.
In Proceedings of the December 9-11, 1968, fall joint computer conference,
AFIPS ’68 (Fall, part I), pages 267–277, 1968.

TClouds D2.2.4 Page 113 of 118

http://www.theregister.co.uk/2009/10/05/amazon_bitbucket_outage/
http://www.theregister.co.uk/2009/10/05/amazon_bitbucket_outage/

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

[Mil08] R. Miller. Explosion at The Planet causes major outage. Data Center Knowl-
edge, June 2008.

[MJM08] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius: building
efficient replicated state machines for wans. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation, pages 369–
384, 2008.

[Mon] Mongodb. http://www.mongodb.org.

[MSL+10] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo Alvisi,
Mike Dahlin, and Michael Walfish. Depot: Cloud storage with minimal trust.
In Proc. of the 9th USENIX Symposium on Operating Systems Design and
Implementation – OSDI 2010, pages 307–322, October 2010.

[MTT12] Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio. P2P-MapReduce: Par-
allel data processing in dynamic cloud environments. Journal of Computer
and System Sciences, 78(5):1382–1402, September 2012. JCSS Special Issue:
Cloud Computing 2011.

[mys12] Mysql, April 2012.

[Nao09] Erica Naone. Are we safeguarding social data? Technology Review
published by MIT Review, http://www.technologyreview.com/
blog/editors/22924/, February 2009.

[Nie93] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers, 1993.

[NW98] M. Naor and A. Wool. Access control and signatures via quorum secret shar-
ing. IEEE Transactions on Parallel and Distributed Systems, 9(9):909–922,
1998.

[ORS+11] Diego Ongaro, Stephen M. Ruble, Ryan Stutsman, John Ousterhout, and
Mendel Rosenblum. Fast crash recovery in RAMCloud. In Proceedings of
the ACM Symposium on Operating Systems Principles, 2011.

[pos12] Postgresql, April 2012.

[Pri] Marco Primi. libpaxos2. http://libpaxos.sourceforge.net/.

[PS02] Jaehong Park and Ravi Sandhu. Towards usage control models: beyond tra-
ditional access control. In Proceedings of the seventh ACM Symposium on
Access Control Models and Technologies, SACMAT ’02, pages 57–64, Mon-
terey, California, USA, June 2002. ACM.

[PW97] David Peleg and Avishai Wool. Crumbling walls: a class of practical and
efficient quorum systems. Distributed Computing, 10:87–97, 1997.

[Pâr86] Jehan Pâris. Voting with witnesses: A consistency scheme for replicated files.
In In Proceedings of the 6th International Conference on Distributed Comput-
ing Systems, pages 3–6, 1986.

TClouds D2.2.4 Page 114 of 118

http://www.mongodb.org
http://www.technologyreview.com/blog/editors/22924/
http://www.technologyreview.com/blog/editors/22924/
http://libpaxos.sourceforge.net/

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

[Rap11] J.R. Raphael. The 10 worst cloud outages (and what
we can learn from them). Infoworld. Available at
http://www.infoworld.com/d/cloud-computing/
the-10-worst-cloud-outages-and-what-we-can-learn-them-902,
2011.

[Ric11] M. Ricknas. Lightning strike in Dublin downs Amazon, Microsoft clouds. PC
World, August 2011.

[RK07] Hans Reiser and Rudiger Kapitza. Hypervisor-based efficient proactive recov-
ery. In Proc. of SRDS, 2007.

[RS-a] Rackspace cloud files pricing. http://www.rackspace.com/cloud/
files/pricing/.

[RS-b] Rackspace cloud servers pricing. http://www.rackspace.com/
cloud/servers/pricing/.

[RST11] Jun Rao, Eugene J. Shenkita, and Sandeep Tata. Using Paxos to build a scal-
able, consistent, and highly available datastore. Proceedings of the VLDB
Endowment, 2011.

[RZW+10] Rajiv Ranjan, Liang Zhao, Xiaomin Wu, Anna Liu, Andres Quiroz, and Man-
ish Parashar. Peer-to-peer cloud provisioning: Service discovery and load-
balancing. In Nick Antonopoulos and Lee Gillam, editors, Cloud Computing,
Computer Communications and Networks, pages 195–217. Springer London,
2010.

[S3-] Amazon S3 pricing. http://aws.amazon.com/s3/pricing/.

[S3A] Amazon S3 access control list (ACL) overview. http://docs.aws.
amazon.com/AmazonS3/latest/dev/ACLOverview.html.

[S3F] S3FS - FUSE-based file system backed by Amazon S3. http://code.
google.com/p/s3fs/.

[S3Qa] S3QL - a full-featured file system for online data storage. http://code.
google.com/p/s3ql/.

[S3Qb] S3QL 1.13.2 documentation: Known issues. http://www.rath.org/
s3ql-docs/issues.html.

[Sar09] David Sarno. Microsoft says lost sidekick data will be restored to users. Los
Angeles Times, Oct. 15th 2009.

[SB12] Joao Sousa and Alysson Bessani. From Byzantine consensus to BFT state
machine replication: A latency-optimal transformation. In Proceedings of the
9th European Dependable Computing Conference – EDCC’12, 2012.

[SBC+10] Paulo Sousa, Alysson Neves Bessani, Miguel Correia, Nuno Ferreira Neves,
and Paulo Verissimo. Highly available intrusion-tolerant services with
proactive-reactive recovery. IEEE Transactions on Parallel and Distributed
Systems, 21(4):452–465, 2010.

TClouds D2.2.4 Page 115 of 118

http://www.infoworld.com/d/cloud-computing/the-10-worst-cloud-outages-and-what-we-can-learn-them-902
http://www.infoworld.com/d/cloud-computing/the-10-worst-cloud-outages-and-what-we-can-learn-them-902
http://www.rackspace.com/cloud/files/pricing/
http://www.rackspace.com/cloud/files/pricing/
http://www.rackspace.com/cloud/servers/pricing/
http://www.rackspace.com/cloud/servers/pricing/
http://aws.amazon.com/s3/pricing/
http://docs.aws.amazon.com/AmazonS3/latest/dev/ACLOverview.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/ACLOverview.html
http://code.google.com/p/s3fs/
http://code.google.com/p/s3fs/
http://code.google.com/p/s3ql/
http://code.google.com/p/s3ql/
http://www.rath.org/s3ql-docs/issues.html
http://www.rath.org/s3ql-docs/issues.html

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

[SBG10] Jiri Simsa, Randy Bryant, and Garth Gibson. dbug: Systematic evaluation of
distributed systems. In Proc. of the 5th Int. Workshop on Systems Software
Verification – SSV’10, 2010.

[Sch90] Fred B. Schneider. Implementing fault-tolerant service using the state ma-
chine aproach: A tutorial. ACM Computing Surveys, 22(4):299–319, Decem-
ber 1990.

[SK11] S. Subashini and V. Kavitha. A survey on security issues in service delivery
models of cloud computing. Journal of Network and Computer Applications,
34(1):1–11, 2011.

[SKRC10] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
The hadoop distributed file system. In Proc of the 26th IEEE Symposium on
Massive Storage Systems and Technologies – MSST’10, 2010.

[SNI12] SNIA. Cloud data management interface (CDMI), version 1.0.2. SNIA Tech-
nical Position, June 2012.

[SNV05] Paulo Sousa, Nuno Ferreira Neves, and Paulo Verssimo. How resilient are
distributed f fault/intrusion-tolerant systems? In Proceedings of Dependable
Systems and Networks – DSN 05, pages 98–107, June 2005.

[SSZ+09] Jeremy Stribling, Yair Sovran, Irene Zhang, Xavid Pretzer, Jinyang Li,
M.Frans Kaashoek, and Robert Morris. Flexible, Wide-Area Storage for Dis-
tributed System with WheelFS. In In the Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation – NSDI ’09,
April 2009.

[Sun04] Sun Microsystems. Web services performance: Comparing JavaTM 2 enter-
prise edition (J2EETM platform) and .NET framework. Technical report, Sun
Microsystems, Inc., 2004.

[SUR] 2012 future of cloud computing - 2nd annual sur-
vey results. http://mjskok.com/resource/
2012-future-cloud-computing-2nd-annual-survey-results.

[SvDJO12] Emil Stefanov, Marten van Dijk, Ari Juels, and Alina Oprea. Iris: a scalable
cloud file system with efficient integrity checks. In Proc. of the 28th Annual
Computer Security Applications Conference - ACSAC ’12, 2012.

[SZ05] Fred B. Schneider and Lidong Zhou. Implementing trustworthy services using
replicate state machines. IEEE Security & Privacy, 3(5):34–43, September
2005.

[TBZS11] V. Tarasov, S. Bhanage, E. Zadok, and M. Seltzer. Benchmarking file system
benchmarking: It *IS* rocket science. In Proc. of the 13th USENIX Workshop
on Hot Topics in Operating Systems – HotOS XIII, Napa, CA, May 2011.

[TJWZ08] A. Traeger, N. Joukov, C. P. Wright, and E. Zadok. A nine year study of file
system and storage benchmarking. ACM Transactions on Storage, 4(2):25–80,
May 2008.

TClouds D2.2.4 Page 116 of 118

http://mjskok.com/resource/2012-future-cloud-computing-2nd-annual-survey-results
http://mjskok.com/resource/2012-future-cloud-computing-2nd-annual-survey-results

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

[tpc12] Transaction processing performance council, April 2012.

[VBLM07] Benjamin Vandiver, Hari Balakrishnan, Barbara Liskov, and Sam Madden.
Tolerating Byzantine faults in database systems using commit barrier schedul-
ing. In Proceedings of the 21st ACM Symposium on Operating Systems Prin-
ciples, October 2007.

[VCB+13] Giuliana Veronese, Miguel Correia, Alysson Bessani, Lau Lung, and Paulo
Verissimo. Efficient Byzantine fault tolerance. IEEE Transactions on Com-
puters, 62(1), 2013.

[VCBL09] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung. Spin one’s wheels?
Byzantine fault tolerance with a spinning primary. In Proceedings of the 28th
IEEE International Symposium on Reliable Distributed Systems, pages 135–
144, 2009.

[VCBL10] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung. EBAWA: Efficient
Byzantine agreement for wide-area networks. In Proceedings of the IEEE 12th
International Symposium on High-Assurance Systems Engineering, pages 10–
19, November 2010.

[Ver02] Paulo Verissimo. Travelling through wormholes: Meeting the grand chal-
lenge of distributed systems. In Proceedings of the International Workshop on
Future Directions in Distributed Computing - FuDiCo 2002, pages 144–151.
Springer-Verlag, June 2002.

[Vog09] Werner Vogels. Eventually consistent. Communications of the ACM,
52(1):40–44, 2009.

[VSV12] Michael Vrable, Stefan Savage, and Geoffrey M. Voelker. BlueSky: A cloud-
backed file system for the enterprise. In Proc. of the 10th USENIX Conference
on File and Storage Technologies – FAST’12, 2012.

[Vuk10] Marko Vukolić. The Byzantine empire in the intercloud. ACM SIGACT News,
41:105–111, September 2010.

[WA-] Windows Azure pricing. http://www.windowsazure.com/en-us/
pricing/details/.

[WAD12] Yang Wang, Lorenzo Alvisi, and Mike Dahlin. Gnothi: Separating data and
metadata for efficient and available storage replication. In Proc. of the USENIX
Annual Technical Conference, 2012.

[WB90] Samuel D. Warren and Louis D. Brandeis. The right to privacy. Harward Law
Review, 4(5):193–220, December 1890.

[WBM+06] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos
Maltzahn. Ceph: A scalable, high-performance distributed file system. In
Proceedings of the 7th USENIX Symposium on Operating Systems Design and
Implementation, pages 307–320, 2006.

TClouds D2.2.4 Page 117 of 118

http://www.windowsazure.com/en-us/pricing/details/
http://www.windowsazure.com/en-us/pricing/details/

D2.2.4 – Adaptive Cloud-of-Clouds Architecture, Services and Proto-
cols

[WCB01] Matt Welsh, David Culler, and Eric Brewer. SEDA: An architecture for well-
conditioned, scalable internet services. In Proc. of the 18th ACM Symp. on
Operating Systems Principles - SOSP’01, 2001.

[WUA+08] Brent Welch, Marc Unangst, Zainul Abbasi, Garth Gibson, Brian Mueller, Ja-
son Small, Jim Zelenka, and Bin Zhou. Scalable performance of the panasas
parallel file system. In Proc. of the 6th USENIX Conference on File and Stor-
age Technologies – FAST’08, 2008.

[XSZS09] Ke Xu, Meina Song, Xiaoqi Zhang, and Junde Song. A cloud computing
platform based on P2P. In IEEE International Symposium on IT in Medicine &
Education, volume 1 of ITIME ’09, pages 427–432, Jinan, Shandong, China,
August 2009.

[YAK11] Sangho Yi, Artur Andrzejak, and Derrick Kondo. Monetary cost-aware check-
pointing and migration on amazon cloud spot instances. IEEE Trans. on Ser-
vices Computing, PP(99), 2011.

[Zha00] Wensong Zhang. Linux virtual server for scalable network services. In Proc.
of Linux, 2000.

TClouds D2.2.4 Page 118 of 118

	Introduction
	TClouds — Trustworthy Clouds
	Activity 2 — Trustworthy Internet-scale Computing Platform
	Workpackage 2.2 — Cloud of Clouds Middleware for Adaptive Resilience
	Deliverable 2.2.4 — Adaptive Cloud-of-Clouds Architecture, Services and Protocols

	State Machine Replication (BFT-SMaRt) Revisited
	Introduction
	Design
	Design Principles
	System Model
	Core Protocols

	Implementation Choices
	Building blocks
	Staged Message Processing

	Alternative Configurations
	Simplifications for Crash Fault Tolerance
	Tolerating Malicious Faults (Intrusions)

	Evaluation
	Experimental Setup
	Micro-benchmarks
	BFTMapList

	Lessons Learned
	Making Java a BFT programming language
	How to test BFT systems?
	Dealing with heavy loads
	Signatures vs. MAC vectors

	Conclusions

	Improving the Efficiency of Durable State Machine Replication
	Introduction
	Durable SMR Performance Limitations
	System Model and Properties
	Identifying Performance Problems

	Efficient Durability for SMR
	Parallel Logging
	Sequential Checkpointing
	Collaborative State Transfer

	Implementation: Dura-SMaRt
	Evaluation
	Related Work
	Conclusion

	Evaluating over a WAN
	Introduction
	Related Work
	Hypotheses
	Methodology
	Leader Location
	Quorum Size
	Communication Steps
	Stability
	Discussion & Future Work
	Conclusion

	FITCH: Supporting Adaptive Replicated Services in the Cloud
	Introduction
	Adapting Cloud Services
	The FITCH Architecture
	System and Threat Models
	Service Model
	Architecture
	Service Adaptation

	Implementation
	Experimental Evaluation
	Experimental Environment and Tools
	Proactive Recovery
	Scale-out and Scale-in
	Scale-up and Scale-down

	Related Work
	Conclusions

	A Byzantine Fault-Tolerant Transactional Database
	Introduction
	Byzantium
	SteelDB
	Fifo Order
	JDBC specification
	State transfer
	Master change
	Optimizations

	Evaluation
	TPC-C
	Test environment
	Test results

	Lessons learned
	Use case complexity
	DBMS maturity
	Database specific issues

	Final remarks

	The C2FS Cloud-of-Clouds File System
	Introduction
	Context, Goals and Assumptions
	Cloud-backed File Systems
	Goals
	System and Threat Model

	Strengthening Cloud Consistency
	C2FS Design
	Design Principles
	Architecture Overview
	C2FS Agent
	Security Model
	Private Name Spaces

	C2FS Implementation
	Evaluation
	Setup & Methodology
	Micro-benchmarks
	Application-based Benchmarks
	Varying C2FS Parameters
	Financial Evaluation

	Related Work
	Conclusions

	Towards Privacy-by-Design Peer-to-Peer Cloud Computing
	Introduction
	Security objectives
	A new approach
	System Overview
	Orchestration

	Operations
	Account creation

	Preliminary Evaluation
	Related Work
	Conclusion and Future Work

