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Executive Summary

In this deliverable we describe the revisions and extensions of the TClouds subsystems that
deal with security management, automation of security configuration, and security evaluation.
In particular, we extended the automated security analysis of virtualized infrastructures to han-
dle dynamic infrastructures and propose a new proactive analysis approach. Furthermore, the
central management component of the TrustedInfrastructure Cloud has been revised in terms of
usability, e.g., by a new clean separation of security and infrastructure management in the user
interface, and in terms of end-to-end security, in order to support multi-tenant environments.

The automated deployment of a security network configuration that implements a concept
of Trusted Virtual Domains has been finalized and integrated into the OpenStack networking
service. In the area of trust establishment and trust anchors, we discuss solutions for imple-
menting large-scale cloud infrastructure requirements for trust anchors, in particular related to
scalability and remote attestation. Finally, we propose a cloud provenance framework in order
to support the trust establishment.
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Chapter 1

Introduction

1.1 TClouds — Trustworthy Clouds
TClouds aims to develop trustworthy Internet-scale cloud services, providing computing, net-
work, and storage resources over the Internet. Existing cloud computing services are generally
not trusted for running critical infrastructure, which may range from business-critical tasks of
large companies to mission-critical tasks for the society as a whole. The latter includes wa-
ter, electricity, fuel, and food supply chains. TClouds focuses on power grids and electricity
management and on patient-centric health-care systems as its main applications.

The TClouds project identifies and addresses legal implications and business opportunities
of using infrastructure clouds, assesses security, privacy, and resilience aspects of cloud comput-
ing and contributes to building a regulatory framework enabling resilient and privacy-enhanced
cloud infrastructure.

The main body of work in TClouds defines an architecture and prototype systems for secur-
ing infrastructure clouds through security enhancements that can harden commodity infrastruc-
ture clouds and by assessing the resilience, privacy, and security extensions of existing clouds.

Furthermore, TClouds provides resilient middleware for adaptive security using a cloud-
of-clouds, which is not dependent on any single cloud provider. This feature of the TClouds
platform will provide tolerance and adaptability to mitigate security incidents and unstable op-
erating conditions for a range of applications running on a clouds-of-clouds.

1.2 Activity 2 — Trustworthy Internet-scale Computing Plat-
form

Activity 2 (A2) carries out research and builds the actual TClouds platform, which delivers trust-
worthy resilient cloud-computing services. The TClouds platform contains trustworthy cloud
components that operate inside the infrastructure of a cloud provider; this goal is specifically
addressed by Workpackage 2.1 (WP2.1). The purpose of the components developed for the
infrastructure is to achieve higher security and better resilience than current cloud computing
services may provide.

The TClouds platform also links cloud services from multiple providers together, specif-
ically in WP2.2, in order to realize a comprehensive service that is more resilient and gains
higher security than what can ever be achieved by consuming the service of an individual cloud
provider alone. The approach involves simultaneous access to resources of multiple commodity
clouds, introduction of resilient cloud service mediators that act as added-value cloud providers,
and client-side strategies to construct a resilient service from such a cloud-of-clouds.

WP2.3 introduces the definition of languages and models for the formalization of user- and
application-level security requirements, involves the development of management operations

TClouds D2.3.4 Page 1 of 69



D2.3.4 – Automation and Evaluation of Security Configuration and Pri-
vacy Management

for security-critical components, such as “trust anchors” based on trusted computing technology
(e.g., TPM hardware), and it exploits automated analysis of deployed cloud infrastructures with
respect to high-level security requirements.

Furthermore, A2 will provide an integrated prototype implementation of the trustworthy
cloud architecture that forms the basis for the application scenarios of Activity 3. Formulation
and development of an integrated platform is the subject of WP2.4.

These generic objectives of A2 can be broken down to technical requirements and designs
for trustworthy cloud-computing components (e.g., virtual machines, storage components, net-
work services) and to novel security and resilience mechanisms and protocols, which realize
trustworthy and privacy-aware cloud-of-clouds services. They are described in the deliverables
of WP2.1–WP2.3, and WP2.4 describes the implementation of an integrated platform.

1.3 Workpackage 2.3 — Cross-layer Security and Privacy
Management

The overall objective of WP2.3 is to provide mechanisms to manage the privacy-enhanced re-
silience of the TClouds platform. The work package has three phases that span the three years
of the project. The goal during the first project year was to collect component requirements for
management operations and to explore the interaction between the various technologies and the
demonstration in WP2.4. Furthermore, several concepts and systems for selected management
tasks have been developed.

In the second year, the requirements for large-scale and distributed security management
have been consolidated. The components and the architecture have been developed further and
partially finalized. These components are mostly documented in the current deliverable, and
they show how the security objectives are can be implemented and managed on all different
layers concerned by the TClouds platform. In the final and third year, the subsystems have been
revised, extended if necessary, and they have been finalized.

1.4 Deliverable 2.3.4 — Automation and Evaluation of Secu-
rity Configuration and Privacy Management

Overview. This deliverable describes the revisions and extensions of the subsystems relevant
to security management, automation of security configuration, and security evaluation. In par-
ticular, the work on the automated security analysis of virtualized infrastructures (cf. D2.3.1,
Cha. 8; D2.3.2, Cha. 4) has been revised and extended to cope with dynamic infrastructures. The
central management component of the TrustedInfrastructure Cloud has been revised in terms of
usability as well as end-to-end security. Furthermore, the automated deployment of a security
network configuration has been finalized and integrated into OpenStack.

In terms of trust establishment and trust anchors, we discuss solutions for implementing the
requirements of large-scale cloud infrastructures, and we propose a provenance framework as
an extension of secure virtual layer management (D2.3.2, Cha. 5.1).

Structure. The deliverable is structured in the following way: Chapter 2 introduces the secu-
rity analysis of dynamic virtualized infrastructure as an extension to previous automated analy-
sis approaches for static infrastructures. In Chapter 3 the central management component of the
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Figure 1.1: Graphical structure of WP2.3 and relations to other workpackages.

TrustedInfrastructure Cloud is revised in terms of usability and end-to-end security. Solutions
for the large-scale requirements of trust anchors are discussed in Chapter 4. An automated se-
curity network configuration approach is presented in Chapter 5. Finally, Chapter 6 describes a
cloud provenance framework for establishing trust. This chapter appeared also as [Abb13].

Deviation from Workplan. This deliverable conforms to the DoW/Annex I, Version 2.

Target Audience. This deliverable aims at researchers and developers of security and man-
agement systems for cloud-computing platforms. The deliverable assumes graduate-level back-
ground knowledge in computer science technology, specifically, in virtual-machine technology,
operating system concepts, security policy and models, and formal languages.

Relation to Other Deliverables. Figure 1.1 illustrates WP2.3 and its relations to other work-
packages according to the DoW/Annex I (specifically, this figure reflects the structure after the
change of WP2.3 made for Annex I, Version 2).
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Chapter 2

Security Analysis of Dynamic Infrastruc-
ture Clouds

Chapter Authors:
Sören Bleikertz (IBM)

2.1 Introduction

Multi-tenant infrastructure clouds can bear great complexity and can be exposed to security
issues. Even if one only analyses the static configuration of hosts, VMs, network, and storage
as well as their inter-connectivity, one faces a complex system. Configuration and topology
changes make the system a moving target and can introduce violations of a security policy,
for instance, manifest in incorrect deployment or isolation breaches. Although there have been
analyses of isolation failures in complex static configurations of clouds, such as Bleikertz et
al. [BGSE11] (D2.3.1, Cha. 8), the analysis of dynamic configuration changes is largely miss-
ing [BGM11] (D2.3.2, Cha. 4).

Misconfigurations and Insider Attacks Even if committed unintentionally, misconfigura-
tions are among the most prominent causes for security failures in infrastructure clouds. The
ENISA report on cloud security risks [ENI09] names isolation failure as major technical risk,
with misconfiguration, lack of resource isolation, and ill-defined role-based access policies as
notable root causes. If committed intentionally by a malicious insider, misconfigurations ex-
pose the infrastructure to greater risks. The CSA threat report [CSA10] as well as the ENISA
report agree to insider attacks as a TOP 10 cloud security risk as well as malicious insiders as a
“very high impact” technical risk [ENI09]. The analysis of all configuration changes is crucial
here, as the insider could create a transient insecure state to attack the system and change it
to a secure configuration before the next security analysis. Therefore, there is a need to anal-
yse management operations for their security properties before they are applied, and to achieve
overall accountability for administrator actions. The question is: How can we model config-
uration changes induced by management operations of cloud administrators and check these
changes for violations of a security policy?

Analysis of Dynamic Infrastructure Clouds The concrete aim of our research is to mitigate
the security impact of misconfigurations: (a) We enable honest administrators to create a change
plan for an infrastructure in advance and have this change plan checked for violations of the
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security policy in a what-if analysis. (b) We establish an authorisation proxy to have all config-
uration changes independently checked for violations of the security policy, creating a run-time
audit for misconfigurations and their security impact. (c) We direct this research towards the
run-time mitigation of misconfigurations and enforcement of security policies. Whereas (b)
only establishes an audit log of misconfigurations causing security problems, (c) is aiming at
enforcing the security policy.

To achieve this analysis, we need multiple ingredients. First, we need a faithful repre-
sentation of the topology and configuration of the virtualised infrastructure, which we call a
realisation model. Second, we need a description of information flow traversal of infrastructure
components to evaluate information flow as the key security aspect. We draw upon our previous
work for both points. Third, we need a language to specify security goals for virtualised infras-
tructures, where we resort to the language VALID [BG11], already used in research prototypes
for that very purpose.

A crucial piece missing for a dynamic system analysis, however, is a formal model of topol-
ogy and configuration changes in infrastructure clouds. The model needs to capture how rele-
vant operations change the topology and its security properties. Such a model needs to capture
basic operations, such as VMware’s UpdatePortGroup as an operation that changes the VLAN
configuration, or larger asynchronously executed tasks, such as creating or migrating a virtual
machine. Expressing such cloud operations in a formal system is challenging: If the model is
too abstract, it may fail to capture many significant attacks, while if it is too detailed, formal
reasoning about security in the model becomes infeasible—both for manual and for automated
verification. The main contribution of this chapter is to develop an operations model, which
enables us to establish an analysis system for misconfigurations.

Our approach builds upon graph rewriting, where topology, security goals, and configuration
changes are expressed as graphs and transformations of graphs. This methodology allows us
to check efficiently whether configuration changes applied to a given topology will violate the
security goals or not. We realise a prototype tool for this analysis as well as application cases
in change planning and run-time audit of misconfigurations and establish this analysis in a
practical environment with VMware.

2.2 System and Threat Model

2.2.1 A Graph Model of Virtualised Infrastructures

A graph-based model of static virtualised infrastructures has been proposed in [BGSE11]. The
vertices of such a graph represents the virtualised infrastructure elements, e.g., physical servers
or virtual machines, and the edges model the relationship among the elements, thereby capturing
the topology of the system. Furthermore, nodes are typed, e.g., vMachine, and attributed to
capture further properties and configuration aspects of each element. We consider the model as
a directed, node and edge typed, and attributed graph.

In order to build the model we require sufficient information on the topology and configura-
tion of a virtualised infrastructure. Two steps are required for the model construction: Discovery
(§4.1) and Translation (§4.2). The discovery extracts the configuration from the hypervisors or
management system of heterogeneous virtualised infrastructures, and translates the extracted
configuration data into the model.
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2.2.2 Threat Model

As core threat, we model non-malicious (deliberate and non-deliberate, accidental and incom-
petence) human-made faults. Even if administrators are honest, they can still make mistakes that
lead to a security breach. Therefore, their behavior is not malicious and byzantine, but comes
with some fairness constraints: A provider administrator will attempt to issue commands in a
well-defined way through the service interface. A provider’s behavior will take feedback from
a security analysis or an audit into account. As part of the system foundations, we require that
the analysis probes discovering the infrastructure configuration get an authentic view of the
configuration.

In general, the analysis method proposed is capable to handle malicious, byzantine adver-
saries as well. To protect against those, the infrastructure needs to be modified to enforce sole
access through the management interface (and prevent circumvention approaches, such as a di-
rect SSH log-in to the physical hosts). Also, the security validation needs to be mandatory for
all management operations, which is part of future work.

2.3 Modeling and Analysis of Dynamic Infrastructure Clouds

2.3.1 A Model of Dynamic Virtualised Infrastructures

The core of our model are graph transformations and we introduce a novel modelling of man-
agement operations and their impact on the configuration and topology of a virtualised infras-
tructure given as a graph. Furthermore, we integrate existing approaches for the formalisation
and analysis of security goals for virtualised infrastructure in our model, thereby establishing
a unified approach. Additionally, these existing approaches are extended to enable the security
analysis of dynamic virtualised infrastructures.

The basic idea of graph transformation is as follows. We have a graph transformation rule
p, also called a production, in the form of p : L

r−→ R, where graphs L and R are denoted the
left hand side (LHS) and right hand side (RHS), respectively. A partial graph morphism r,
the production morphism, establishes a partial correspondence between elements in the LHS
and the RHS of a production, which determines the nodes and edges that have to be preserved,
deleted, or created. A match m finds an occurrence of L in a given graph G, then G

p,m
==⇒ H is

an application of a production p, where H is a derived graph. H is obtained by replacing the
occurrence of L in G with R.

Our unified model forms a graph grammar that consists of a start graph and a collection of
productions, which transform the start graph. In our case, the start graph is a graph model of
the virtualised infrastructure, and the productions represent our model of topological changes,
information flow analysis, and policy specification.

2.3.1.1 Modelling of Infrastructure Changes

The Operations Transition Model captures the changes to the topology and configuration of
a virtualised infrastructure through management operations. Our goal is a practical security
system for virtualised infrastructures, therefore we focus our modelling efforts, as an example,
on VMware and its management operations. Each management operation is modelled as a
graph production that transforms the virtualised infrastructures, which is modelled as a graph,
into a modified one.
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Figure 2.1: PortGroup Operation in GROOVE: UpdatePortGroup

For any existing real-world virtualised infrastructures like VMware, the API documentation
does not provide a precise formal description and model, but rather a semi-formal description
of the operations, parameters, as well as the preconditions and effects that the operations have.
A contribution of this work is to obtain a formal model that allows for precise statements to be
made and proved or refuted. It is of course not possible to formally prove the correctness of such
a model itself, however there is a good methodology to obtain a “good” model by combining
two directions.

The first direction is to follow the documentation and translate the documented effects into
our (abstract) graph model. The second is to experiment with the real implementation, to verify
that the operations indeed do have the effect on the infrastructure that our model predicts. To
study these experiments we need to translate the real infrastructure topology into our abstract
graph before and after the operation has been performed, and check that the resulting graph
transformation coincides with our model of the operation.

An example of a operations model for the VMware operation UpdatePortGroup is given in
Figure 2.1. Using this operation, an administrator can change the configuration on an existing
portgroup. The portgroup is identified by its name, as well as the host where it resides on,
and the operation allows to change the portgroup’s name and VLAN ID. Changing attributes is
modelled as changing the edges to different data nodes based on the input parameters. In order
to maintain compatibility with the existing graph model, not only does the portgroup node
contain the VLAN ID, but also the associated vport nodes, i.e., virtual switch ports. Therefore,
changing the VLAN ID of the portgroup also requires to change the VLAN ID of all virtual
ports associated to that portgroup. For this we use a universal quantifier ∀ that updates the
vlanId attributed of all matching vport nodes [RK09].

2.3.1.2 Dynamic Information Flow Analysis & Security Policies

An approach that has been presented in [BGSE11] performs an information flow analysis on
a graph-based model of a virtualised infrastructure, in order to detect isolation failures. The
approach consists of a set of traversal rules that captures how elements in the infrastructure
provide isolation, e.g., VLANs provide network isolation. A graph traversal guided by the set
of traversal rules computes the transitive closure and determines the information flow in the
system.

This information flow analysis is so far limited to a static snapshot of the network and thus
unable to deal with the dynamic nature and frequent changes of such infrastructures. We need to
integrate this information flow analysis into our dynamic graph model and thus obtain a dynamic
information flow analysis. We do so by expressing the traversal rules of the information flow
analysis as graph production rules. We use the graph rewriting control language of GROOVE
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to compose the information flow analysis from the rules.
The final part of our unified model deals with the formalisation of security policies, which

describe properties of the topology and configuration of an infrastructure cloud. We follow
here the approach of the policy language VALID [BG11]. Such policies can also be expressed
as graph production rules, where a rule matches parts of the graph with potential additional
conditions on this match. Typically, one would express a violation of a security policy as a
graph production rule, and try to match the rule on the evolving graph. Once a match is found,
a violation of the security policy is found.

2.3.2 Automated Analysis using GROOVE

Many graph transformation tools have been developed in the past, among them: GROOVE [GdR+11,
Ren], AGG [Tae03], GRGen [GBG+06], and PROGRES [SWZ99]. For this work, we decided
to use GROOVE as our graph transformation environment. GROOVE is a general-purpose graph
transformation tool that enables an expressive specification of production rules, e.g., by pro-
viding nested quantifications and path constructions using regular expressions on edge labels.
Furthermore, an imperative control language allows to schedule the application of rules, which
also allows more complex control flow constructions, as well as enabling parametrised rules,
where parameters are passed from a control program to a production rule. We refer to a detailed
comparison between different graph transformation tools to [GdR+11].

2.3.3 Application Scenarios of our Analysis System

2.3.3.1 Change Planning

The administrator specifies the sequence of change requests (either directly as a change program
in GROOVE’s control language or in a proprietary provisioning language, translated to it). Once
the change program is submitted to GROOVE, the tool will apply the changes to the realisation
model, derived from the actual infrastructure. By that, the tool can establish a what-if analysis
and determine what security impact the intended changes will have on the infrastructure.

If the new realisation model obtained from the execution of the change program violates the
VALID security goals, the tool notifies the administrator to reject the proposed change requests
and provides the GROOVE output of the matched attack sub-graph as diagnosis. Otherwise,
the tool returns that the intended changes are compliant with the security goals, after which the
administrator can provision the changes to the infrastructure.

2.3.3.2 Runtime Audit of Misconfigurations

Run-time audit of misconfigurations expands on the principles of the change planning. Whereas
change planning requires the administrator to devise the changes in advance and have them
checked by our analysis statically, the run-time audit intercepts change requests dynamically at
an authorisation proxy and checks them concurrently as they occur and before they are applied.
The idea of the run-time auditing is to establish accountability for administrator actions: admin-
istrator’s configuration changes are validated against the security policy and the results of these
checks entered into the audit logs along with the administrator’s username and the committed
commands. We introduce an authorisation proxy as wrapper of the administration API, which
acts as policy enforcement point (PEP) and auditor on configuration changes, and employ our
analysis as part of the policy decision mechanism.
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2.4 Conclusions
In this work, we started to tackle the problem of misconfigurations in virtualized infrastruc-
tures. Our first solution consists of a practical security system that employs a formal model
of cloud management operations in order to proactively assess their security impact. Building
our modeling efforts upon graph transformation, we offer a unified approach in an intuitive and
expressive form. We propose two application scenarios for our system: change planning and
run-time auditing.
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Chapter 3

Revised Security Management for the Trusted
Infrastructure Cloud

Chapter Authors:
Jan-Niklas Fingerle, Norbert Schirmer (SRX)

3.1 Introduction

In the TrustedInfrastructure Cloud (cf. Deliverable D2.1.1 Chapter 13) a central management
component, called TrustedObjects Manager (TOM), manages a set of appliances, in case of
TClouds these are the TrustedServers (cf. Figure 3.1).

The TOM offers a web based user interface towards the administrator to manage the in-
frastructure and the security policies. A central security concept of the TrustedInfrastructure
cloud is the Trusted Virtual Domain (TVD): a trustworthy virtual overlay on the physical re-
sources (computing, networking, storage) providing strong isolation guarantees. In this chapter
we describe a revision of the TOM which resulted from the feedback and experience we made
in the first two project years. The main drawbacks of the old version were, that there was no
strict separation between TVDs and other components like VPNs and that their was no proper
support for a multi-tenant and multi-product environment. The revision done in the third year
improved this in two directions:

• Usability: the interface and the database has been reworked to separate the general se-
curity management (TVDs) from the infrastructure management. This design highlights
the fact, that the security settings should be centrally managed as they have effect on all
entities of the infrastructure. Therefore it is preferable to have them accessible on a single
spot in the interface.

• End-to-end security: to get the most security benefits out of the concept of the TVDs the
endpoints accessing the cloud have to be taken into consideration as well (cf. Deliverable
D2.1.2 Chapter 5, Deliverable D2.1.3 Chapter 2.2). Only then a trustworthy end-to-end
security can be established. The core components of the TOM were revised to support
this multi-tenant, and multi-product environment.
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Figure 3.1: TrustedInfrastructure Cloud

3.2 TrustedObjects Manager User Interface

3.2.1 Integrated Configuration

The current version of the central configuration server TOM provides for an integrated con-
figuration approach. The TrustedObjects Manager has been designed to work with multiple
products like TrustedServer, TrustedDesktop, TrustedVPN, TrustedDisk, etc. In the old ver-
sion, this was achieved by using the TrustedObjects Manager as a base platform and installing
different functional packages on top of it. The revised TrustedObjects Manager has all the avail-
able functionality integrated, restricted by licenses and choices on a per organization basis (cf.
Figure 3.2).

This integrated approach allows for a generalized, global configuration of the security pol-
icy. Functionality has been moved from the specialized products to the general, global Truste-
dObjects Manager layer to enable reuse and interconnection between different products, es-
pecially with regards to the security configuration. The configuration is globally defined and
is propagated to the product specific settings. This ensures that every product is aware of the
global settings, especially the security policy.

The TVD integrates all security needs and is enforced throughout the TrustedObjects man-
ager and in all products.

TClouds D2.3.4 Page 11 of 69



D2.3.4 – Automation and Evaluation of Security Configuration and Pri-
vacy Management

Figure 3.2: Multiproduct support for a Organisation

All configuration of interoperation between different products is based on Trusted Virtual
Domains that have been extended to contain network encryption settings for a generalized vir-
tual network approach (cf. Figure 3.3). Virtual networks – the former VPNs – now exist as pure
network routing configuration inside a TVD (cf. Figure 3.4).

The TrustedObjects Manager will allow the flow of information between different TVDs
only if this is explicitly configured. This can be done with the configuration of Information
Flows. TVDs and Information Flows capture the security policy of an infrastructure on the
most abstract level (cf. Figure 3.5). The default is that information flow is allowed within the
same TVD and prohibited between TVDs. As such, each product has to comply to this policy.
Each product may enable the user to do at most what is allowed in the TVD and Information
Flow setting, but may opt to allow less.

3.2.2 Configuration of TrustedServer components
The revised TrustedObjects Manager interface allows a more user friendly configuration of
almost every configuration aspect of the infrastructure (cf. Figure 3.6). This had been of much
concern in older versions of the TrustedObjects Manager, as the administrator had to provide
many idiosyncratic and internal configuration options. This was unnecessarily complex and
prohibited automatic enforcement of the security policy.

One central service – used not only by TrustedServer but also by other products out of
the scope of this document – is the “Disk Manager” (cf. Figure 3.7). Disk images (of virtual
machines) are uploaded in one central repository and are referenced when needed. This virtual
machines are named compartments in the context of TVDs.

IP pools are used to automatically assign IPs from a valid range. This is needed to automate
the Integration off multiple installations of the same compartment template. Individual IPs no
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Figure 3.3: TVD settings

longer have to be assigned to a specific installation (while the administrator may still chose to
do so anyway) (cf. Figure 3.8 on page 16).

In this way we can configure compartment templates that provide a blueprint for individ-
ual compartment installations (cf. Figure 3.9). One can use the same disk image for multiple
compartment templates. A compartment templates pre-sets almost all needed configuration for
a compartment installation, leaving out only the owning user and the machine(s) where the
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Figure 3.4: Virtual Network

Figure 3.5: Information Flow Settings

installation will be installed.
Compartment templates are used to add a compartment to a user (cf. Figure 3.10). On a

TClouds D2.3.4 Page 14 of 69



D2.3.4 – Automation and Evaluation of Security Configuration and Pri-
vacy Management

Figure 3.6: Overview of an Organisation

Figure 3.7: Disk Manager

TrustedServer this is usually a system user, as a VM on a server typically implements a service.
In contrast on a TrustedDesktop the user identifies the user of the desktop system, in case the
desktop system is shared among multiple users.

A compartment template may be configured to be member of a virtual network, together
with other virtual network components like VPN networks and servers.

The key to user friendliness in the revised TrustedObjects Manager is generalization: The
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Figure 3.8: IP Pool Settings

Figure 3.9: Compartment Template

Figure 3.10: User Settings
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parallel installations of virtualized systems (“compartments”) should not require the adminis-
trator to configure every aspect about each compartment separately (cf. Figure 3.11). Instead,
we base individual compartment installations (“an instance of a system that may live on one
machine or multiple machines with migratable state”) on compartment templates, generic de-
scriptions, which allow for multiple compartment installations to be based upon. These com-
partment templates, again, refer to common, generalized objects like disk images or IP pools,
as shown below.

Figure 3.11: Server and Compartment Settings

This installation has then to be added to one or more TrustedServer hosts. If it is added to
multiple hosts, migration of system state between theses hosts may be used. All these changes
lead to a simpler and more consistent configuration compared to the old TrustedObjects Man-
ager:

• The generalized configuration reduces the number clicks needed significantly.

• TVD security is enforced throughout the whole system, ensuring interoperability between
different products.

• The administrator no longer needs to configure technical idiosyncrasies like tun-devices
with special IPs for VPN integration.
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To achieve these changes, not only the GUI was modified; much more effort went into the
TrustedObjects Manager backend as well as in improvements on the TrustedChannel manage-
ment protocol, which are described in the next chapter.

3.3 Appliance Management
All TrustedObjects Manager managed appliances are managed through the TrustedChannel
management protocol. This protocol is organized in several layers.

• Encryption and Remote Attestation Layer: This layer sets up the trusted channel in a
trustworthy manner (cf. Deliverable D2.4.1 Chapter 9.3)

• Binary Data Stream Layer: This layer deals with the data transfer for the management
communication between TOM and TrustedServer, once the trusted channel above has be
established

• Functional layer: The management protocol for the TrustedServer itself.

The revision has affected the Functional layer and reflects the newly achieved modularity
which we have described for the user interface before: The clean separation of TVDs as global
setting, and the multi-tenant and multi-product support.

3.3.1 Encryption and Remote Attestation Layer
The outer layer is based on TLS. It extends TLS by including remote attestation through Trusted
Platform Modules. Therefore the TrustedObjects Manager can trust the client not to be com-
promised. Some of our product clients are not managed appliances, but unmanaged legacy
systems, eg. Windows or Linux machines (cf. Deliverable D2.3.2 Chapter 5.2). In these special
cases, the remote attestation will be omitted, falling back to the regular TLS handshake. The
TrustedObjects Manager keeps a list of machines which are allowed do use the legacy protocol,
so this won’t compromise the security of remote attestation.

3.3.2 Binary Data Stream Layer
Inside the established TLS channel, this layer establishes the message passing layer. The data
is transmitted in a sparse binary data stream. It uses multiple techniques like command dictio-
naries and ASN.1-like data encoding, to keep the bytes sent at a minimum.

3.3.3 Functional Layer
The messages are dispatched to a kind of remote object invocation. Messages in the Trusted-
Channel are transferred between two objects on both ends of the communication channel. The
protocol identifies on the functional layer the communication between two such communicating
objects as independent “jobs”. Calling a method of an interface may create a new object and
therefore create a new job. This allows for an extensible approach, which is used to support the
TrustedObjects Managers multi-product design. In Appendix A, you find the functional proto-
col for the TrustedServer. It shows, which jobs are created and which messages are sent (“<-”
being the direction from the TOM (Server) to the Client (TrustedServer) and “->” the other way
round). You find equivalents for the before mentioned management elements in this protocol,
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Figure 3.12: Management Protocol Execution Example

like security policies, which combine TVDs and Information Flows and download jobs for disk
images. The remote attestation is outside the scope of this layer. The sequence diagram in
Figure 3.12) illustrates the execution of a portion of that protocol. The entities “Certificate-
Store” and “Diskimage Download Execution” on the TOM side and “CertificateStore” on the
TrustedServer side refer to internal jobs which handle the respective portions of the protocol.
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Chapter 4

Adaptation of Configurable Trust Anchors
for Large-scale Infrastructures

Chapter Authors:
Mihai Bucicoiu (TUDA)

4.1 Introduction

The cloud consists of several key concepts, like virtualization, distributed storage, management
and so on and so forth. While proofing one node in the cloud in terms of trust is a very chal-
lenging task, trusting the entire infrastructure is even harder to achieve. In this report we shall
present our vision to expand Cryptography-as-a-Service, a solution of single node trust, in order
to create a trusted infrastructure. We will look at the challenges that rise when building such an
infrastructure and discuss some solutions to it. Moreover, we shall present the partial setup of
CaaS on the AWS EC2 cloud.
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Figure 4.1: Scaling Trusted Computing for infrastructure clouds

Cloud computing offers IT resources like storage, networking and computing platforms
on an on-demand and pay-as-you-go basis, which makes them very appealing to clients. The
problem with such services is that the customer must trust the administrator of the cloud with
his personal (and private) data. In our Cryptography as a Service (CaaS), we specifically aim at
providing client-controlled trust for a node. We want to expand CaaS to the cloud infrastructure
with multiple nodes, allowing the client to use a simple and compact interface (Figure 4.1)
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only validating the cloud once and trusting it when her VMs are managed (e.g., migrated) by
the cloud administrator.

4.2 Scalability challenges and possible solutions
The CaaS design relies on the fact that the client is based on the trustworthiness of the cloud
node (i.e., our extended hypervisor) on which she deploys her virtual machines (VMS). This
trust is established using TPM (Trusted Platform Module) sealing functionality to the trusted
state S. However, the standard TCG (Trusted Computing Group) concepts have crucial draw-
backs when applied in the context of real-life cloud computing, i.e., large-scale infrastructures:

1. The platform state S is reported using binary attestation, hence identified as a crypto-
graphic hash (SHA1) of the software components comprising the state. Thus, minimal
changes to the software stack (e.g., a security update) result in a different hash. Con-
sequently, the client has to be aware of all possible trustworthy hash values. Moreover,
determining the trustworthiness of a hash value requires knowledge of the code base the
hash is derived from and thus the client gains full insight in the cloud provider’s infras-
tructure. This is, on one hand, infeasible for the provider, since his code base is his trade
secret, and on the other hand unnecessary complexity for the client, who is rather inter-
ested in the software stack fulfilling certain security properties (e.g., protection of her
secrets) instead of having full insight.

2. Leveraging a certified TPM binding key always requires at one point in the certification
chain a TPM-dependent, i.e., platform-dependent, certification key1 (independently from
being a migratable or non-migratable key). Hence, the client must be able to verify that
she is communicating with a genuine TPM, requiring a certification of the TPM’s creden-
tials by a certification authority, denoted in TCG terminology as privacy CA. However,
cloud infrastructures can include hundreds of thousands of nodes where the client’s VMs
can be deployed, requiring the client to verify hundreds of thousands of platforms.

3. Successfully verifying the attestation of a platform, only informs the client about the
trustworthiness of the platform’s software stack, but does not provide important meta-
information such as the physical location of the platform. In our adversary model, the
client has to be assured that the attested platform is on the premises of the cloud provider,
thus under physical control of a trusted staff of hardware administrators. Otherwise, a
logical attacker can trick the client into deploying her private information onto a platform
running a trusted software stack, but deployed outside this trusted perimeter, which is
easily prone to physical attacks by outsiders.

While providing solutions to the above mentioned scalability, challenges of Trusted Com-
puting are out of scope of this report. Nevertheless, we do want to briefly mention here our ap-
proaches towards resolving these issues. Problem 1 is a long standing problem of TCG proposed
Trusted Computing and a possible solution is property-based attestation (see, e.g., [SSW08]),
which abstracts binary measurements of software to their desired security properties.

A possible solution for Problems 2 and 3 would be to establish the cloud provider as trusted
Certification Authority, which provides the required certification for all its platforms within
the trusted perimeter. To conclude, if the provider certifies a platform, the client is assured

1This key is of type Attestation Identity Key (AIK) [tpm].
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that she is not tricked into revealing her secrets to an outside attacker. Considering the large
number of platforms in a cloud (and its strong variances due to maintenance) and the consequent
enormous complexity of managing this list, this approach is in practice infeasible. In CaaS,
we conceptually solve this problem more efficiently, leveraging transitive trust (cf. migration
in Section 4.3 and [SMV+10][SGR09]). The client initially instantiates her VM images only
on a node belonging to a fixed subset of the cloud nodes (“builder nodes”), which can be
publicly attested by the client. From these nodes, the instantiated VM is securely migrated to
“computation nodes” for actual execution.

4.3 Fulfilling cloud requirements
In this section we will look into more details of CaaS design and if it can be scaled to large-
infrastructures as cloud environments provide.

4.3.1 Design
Figure 4.2 illustrates the CaaS architecture in the default Infrastructure as a Service cloud
model. For the sake of brevity, we only discuss each component role, while the architecture
of the CaaS is detailed in D.2.1.2. The main goal of CaaS is to provide confidentiality for the
customer VMs, called DomUs in Xen terminology, from the cloud provider administrator. It
achieves this by two separate means: 1) removing all memory management from the manage-
ment domain (e.g., Dom0 for Xen) into a new domain, called DomT, that can be verified using
a TPM, and 2) adding a new encryption layer, called DomC, used for accessing the encrypted
HDD of the virtual machine. By these means, the administrator cannot access the HDD of the
VM, which is stored encrypted, and cannot read the memory of the running VM. For storing
the key of the encrypted HDD, CaaS makes use of the hardware, namely the TPM, and binds
this key to it.
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(Stub Domain) 
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Memory Access Control 
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Figure 4.2: CaaS Design: Establishment of a separate, coupled security-domain, denoted as
DomC, for critical cryptographic operations.
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CaaS can be viewed as a "Local Service", described in Section 2.1.2.1 of D.2.3.2, that
provides encryption to individual VMs using the host’s TPM. As CaaS only impacts virtual
machines operations (e.g., creation or migration), we will only consider these in the remaining
of this section.

4.3.2 Analysis for transfer to large scale scenarios

Section 2.1.4 of D2.3.2 defines two important requirements that need to be fulfilled by any
algorithm in order to be capable of adaptation for a cloud environment: scalability and elasticity.

First, let’s have a look at DomT component. A cloud consists in a number of hosts, on each
running a hypervisor responsible for VM management. Each hypervisor needs to be expanded
by adding the DomT functionality for Dom0 and the required access control for memory man-
agement. As this is done independently for each hypervisor, this operation can scale at the
magnitude of cloud and it has no other requirements for the cloud infrastructure. This tech-
nique, called domain disaggregation, is already used by cloud provider to brake Dom0 into
several privileged service domains.

If we assume that all the hypervisors in the cloud have been extended with DomT, adding
DomC to each VM require no further modification of the hypervisor. Because this function is
atomic, i.e., each VM has his own DomC, scaling to every VM is only a matter of resources
availability. The elasticity of the algorithm also holds due to the one to one relationship to
each VM, not requiring a fixed number of resources available. If parts of the cloud have not
been extended with DomT, they can still be used for starting "vanilla" VMs, but will not benefit
from the encryption provided by CaaS. Moreover, migrating encrypted VM to such a host is not
possible.

4.3.3 Cloud provider requirements

There are three major requirements, as depicted in Section 2.1.3 of D2.3.2, that a cloud provider
will ask before deploying any new system: impact on the current cloud infrastructure, demand
for the new system, and market penetration.

The first and most important aspect is the impact of the new system. CaaS is designed to
improve the security of the cloud by limiting the access to the customer VMs from the cloud
administrator, adding to the overall security of the cloud. In terms of resources required, CaaS
adds only 6.5MB for DomT (both on local disks and memory) and 1MB for each running VM.
As shown in Section 3.3.3, D.2.1.2, the impact on disk access performance is only 3.2%, with
no additional impact on the networking or other I/O operations. In terms of reliability, CaaS
does not change the cloud as a whole.

Our system was created based on a major demand and to solve the main argument when
talking about migrating to cloud services, i.e., the customer needs to trust the cloud provider
with its data. Moreover, if we look at sensitive information, like that saved by hospitals for their
patients, there are several laws that prohibit the release of such information to outsiders, making
the power of cloud computing unusable. In D1.3.3 we go into the details of how CaaS can be
used to enable hospitals to make use of the power provided by cloud computing.

In terms of market penetration, CaaS can be provided as a separate service to only those
that need extra protection of their data. Being the first product that can offer isolation from the
cloud provider itself, we believe that it can be of great benefit to those that adopt it.
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4.4 Real-world implementation design
Cloud clients of existing public infrastructure clouds can already use our security architecture
to protect their high-value credentials against end-users compromising their workload VMs.

We describe how our implementation can be adapted for the Amazon EC2 cloud, which we
chose due to its usage of Xen and its popularity. The first step would be to extend the Xen
hypervisor with CaaS, namely to add the DomT and remove unnecessary management access
from Dom0. This can be done through a normal update routine and should be done only once
for each host. We now look at how daily VM operation can be done in order to maintain the
security of the VM and his attached domC.

Suspension and live migration are fairly similar in the sense that suspension saves the current
execution state of a VM to storage and can restore it at any time later, whereas live migration
transfers the execution state from one physical machine to another while minimizing the down-
time. We only cover migration here, as this technically implies suspension.

In order to support live migration, the usual migration protocol ([CFH+05, SCP+02]) needs
to be wrapped, but in essence it works unaffected by client and DomU input. Instead of mi-
grating plaintext VM memory from one host to another, the memory must be encrypted, since
migration requires the involvement of Dom0 in order to distribute the saved state to the target
platform. Thus, before granting Dom0 the required access to DomU’s memory, DomT encrypts
this memory in-place. Then, DomU’s state is transferred to the target node using protocols from
traditional live migration.

To restore the transferred state on the target platform, DomC has to be migrated as well to de-
crypt the migrated DomU state on the target platform. Restoring a VM state requires platform-
dependent modifications to the state, such as rebuilding the memory page-tables. DomT’s do-
main building code performs these modifications on DomU during DomU’s resumption. While
it would be possible to delegate this task to our trusted hypervisor or a central trusted domain
building VM ([MMH08, BLCSG12]), this has the drawback of bloating the Xen hypervisor
code base and introducing unnecessary complexity at that level or removing the client’s full
control over the DomU domain building process. However, before DomC can perform this
task, its own state has to be restored.

In our design we opted for DomC program state migration instead of VM state migration.
We therefore only transfer the state of the cryptographic programs in DomC and do not mi-
grate the DomC VM state (e.g., CPU state). To migrate the program state, the target platform
instantiates a new DomC and updates its state with the DomC state of the source platform. Af-
terwards, the new DomC is able to decrypt and resume the DomU state on the target platform
and the old DomC on the source platform can be discarded. To achieve the protection of the
transferred DomC state, this state is encrypted under the public TPM key, pkTPM , of the sys-
tem where the domain is transfered to. This can only be decrypted by the TPM itself with the
private-key. Thus, only a target node running our trustworthy hypervisor is able to decrypt and
resume the DomC state. All cloud nodes running our hypervisor form a trusted network, in
which the client transitively trusts all nodes to securely distribute her DomU and DomC, after
she has successfully verified the node on which she instantiated her DomU.

In case of suspension, the protocol works identical, except that the “target platform” is cloud
storage to which the protected DomC and DomU states are saved by Dom0.
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Chapter 5

Secure VM Containers

Chapter Authors:
Roberto Sassu (POL)

5.1 Overview

“Secure VM Containers” is a new extension that aims to enhance the security properties of-
fered to virtual machines by the bare OpenStack. Since the Folsom release, Quantum, a core
component of OpenStack, allows tenants to configure logically isolated virtual networks which
connect the network interfaces of virtual machines. Quantum can accomplish this task by us-
ing different technologies, like VLAN, GRE and OpenFlow, through a plugin mechanism that
allows developers to provide different implementations of the same abstract API.

Our new extension does more than providing isolation to tenants’ virtual networks as it ap-
plies the Trusted Virtual Domain (TVD) concept to the Cloud. The TVD model was defined
by Bussani et al. [BGJ+05] in order to address a serious concern that is present in distributed
environments: the difficulty to apply a security policy uniformly across all the platforms that
compose a distributed environment. The difficulty resides in the fact that the configuration task
is error prone and that the necessity of managing several platforms will often cause inconsisten-
cies that lead to a violation of the security policy requested by a user.

The TVD model defines a container of Execution Environments or EE (which in practice are
equivalent to virtual machines) on which the following security properties must be guaranteed:

• Isolation: TVD members can communicate only among themselves regardless of the
network topology that connects EEs;

• Confidentiality/integrity: Communications among TVD members cannot be intercepted
or modified by unauthorized entities;

• Trust: An EE can join a TVD only if the host which it is running on satisfies the integrity
properties specified in the TVD security policy.

5.2 Ontology-based Reasoner/Enforcer

Ontology-based Reasoner/Enforcer is a new subsystem developed by POL and comprised of
the Reasoner component (not delivered for the TClouds project), which is responsible to check
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Figure 5.1: Extended Libvirt virtual networks

whether the network configuration matches the desired security goals, and the Enforcer compo-
nent, which configures the virtualization software according to the desired security goals1.

The Enforcer partially implements the TVD model by guaranteeing the first three security
properties on the containers. As already mentioned in Section 3.4.2 of the D2.4.2 deliverable
[Rob12], this subsystem is composed by two parts:

• Extended Libvirt: enhanced version of Libvirt that allows to describe TVDs by using
the XML language;

• Open vSwitch: virtual switch that ensures network isolation through VLANs and GRE.

With Extended Libvirt, it is possible to configure the virtualization components to enforce
TVD security properties, as depicted in Figure 5.1. In this figure, two different types of virtual
networks have been represented:

• Backbone Network: This network consists of a virtual switch (Backbone Switch) that
grants connectivity to VMs running on remote hosts through GRE tunnels or physical
network interfaces. As part of the definition of this network, it will be possible to include
the parameters of a pair of IPSec security associations to protect the confidentiality and
integrity of data exchanged between hosts but this feature currently is not implemented;

• TVD network: This network contains a bridge that connects all VMs within a TVD
and is connected to the Backbone Switch through an access port with the VLAN TAG
associated to the TVD. Optionally, it offers to VMs a connection to the outside networks
e.g. through NAT.

As mentioned above, it is possible to create these virtual networks by generating appropri-
ate XML configuration files. Extended Libvirt will translate these files into commands to the
hypervisor, Open vSwitch and iptables (to configure the firewall).

1For the TClouds project, POL is releasing only the latter, as the Remote Attestation Service was delivered in
place of the Ontology-based reasoner component.
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<network>
<name>net-backbone</name>
<bridge name=’br-backbone’ type=’openvswitch’ />
<forward mode="none" />
<tunnel>

<remoteip address=’10.0.0.2’/>
<device name=’gre-1’/>

</tunnel>
<tunnel>

<remoteip address=’10.0.0.3’/>
<device name=’gre-2’/>

</tunnel>
</network>

Listing 5.1: Sample XML configuration file for a Backbone Network

<network>
<name>net-tvd-daefbdfb-0fb3-4cd8-b677-8b4a5575f3af</name>
<bridge name=’br-tvd-daefb’ type=’openvswitch’ ←↩

sourcebridge=’br-backbone’ />
<portgroup name=’pgroup-tvd’ default=’yes’>

<vlan>
<tag id=’1’/>

</vlan>
<virtualport type=’openvswitch’/>

</portgroup>
</network>

Listing 5.2: Sample XML configuration file for a TVD Network

The Listings 5.1 and 5.2 show respectively a sample configuration file of a Backbone Net-
work and a TVD network. From the former, Extended Libvirt creates a virtual network with a
Backbone Switch named br-backbone and two GRE tunnel endpoints to the hosts with IPs
10.0.0.2 and 10.0.0.3. Instead, from the latter, it creates a virtual network with a bridge named
br-tvd-daefb, connected to br-backbone through a VLAN access port with TAG set to
1.

5.3 Integration into OpenStack Quantum

While using the Enforcer alone is sufficient to ensure the TVD security properties on virtual
machines, it must work together with Quantum in order to gain the same advantages in Cloud
infrastructures based on OpenStack. To achieve this goal, the plugin mechanism has been lever-
aged to convert commands sent by a client utility or other OpenStack services (like Nova) into
calls to the TClouds subsystem, i.e. the Ontology-based Reasoner/Enforcer.

As it can be seen in Figure 5.2, the Controller node runs the Quantum server, which has
been configured to use the Open vSwitch plugin. The latter interacts with agents running on the
Clouds’ Compute Nodes responsible to deploy users’ virtual machines. Since the goal of the
Secure VM Containers extension is to configure Compute Nodes as depicted in Figure 5.1, the
work done by POL consisted in replacing the agent developed as part of the Open vSwitch plu-
gin with a new agent, called Libvirt Agent, capable of generating the TVD XML configuration
and sending it to Extended Libvirt. Then, the latter will send commands to Open vSwitch as it
would happen in the original version of the agent.
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Figure 5.2: Integration into OpenStack Quantum

While this choice seems redundant, as the new security extension introduces a new layer to
perform similar tasks, the TClouds solution has the following benefits:

• Interoperability with other Cloud software stacks (e.g. Open Nebula): Since the
TVD security properties are enforced by generating the appropriate XML configuration
and sending it to Extended Libvirt, it is easy to integrate the TClouds extension into other
Cloud management software, as they are usually based on Libvirt;

• Easy discovery of the network state: Since the network state can be derived by dump-
ing the XML configuration from Extended Libvirt, third party software (e.g. SAVE sub-
system developed by IBM in TClouds [BGSE11] and Chapter 8 of the D2.4.2 [Rob12]
deliverable) can easily check for security problems in the infrastructure;

• Enforce the confidentiality/integrity TVD security properties: In future versions, it
will be possible to use the XML configuration to set the parameters of IPSec security as-
sociations. This allows to protect the confidentiality and integrity of the communications
between Compute Nodes;

Referring to the Figure 5.2, the interaction between Quantum and Ontology-based Reason-
er/Enforcer can be split in two phases:

• Setup phase: During this phase, the Libvirt Agent is started on Compute Nodes and
configures the Backbone Network, without tunnel endpoints, (steps 1 and 2). Then it
notifies its presence to the Open vSwitch plugin (step 3), which stores this information in
a database (step 4). Once the Libvirt Agents in other nodes are running, the local Libvirt
Agent receives a notification of their IP address from the plugin (step 5) and updates the
Backbone Network configuration by creating a new tunnel endpoint for each remote agent
(step 6);

• Tenant network creation phase: In this phase, a tenant creates a new virtual network,
e.g. from the Dashboard. The latter invokes the create_network() API function of
the Quantum Server (step 7), which in turn sends a notification of this event to all Libvirt
Agents (step 8). Finally, the agents configure a new TVD network with the VLAN TAG
received by the plugin (steps 9 and 10).
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Figure 5.3: Loop prevention

From this description, it can be inferred that each host (i.e. a Compute Node) is connected
through a tunnel with each other host (Compute Node) in order to allow virtual machines of a
virtual network (i.e. a TVD) talk to each other even if they are spread in different hosts. This
results in the quadratic growth of tunnel endpoints on each host as the number of the hosts
present in a cloud zone increases: n-1 tunnel endpoints on each host for n hosts. The ensemble
of the physical hosts and the tunnels between them form a fully connected mesh network, which
is the basis for an overlay mesh network for connecting the related VMs within each TVD.

The high number of tunnel interfaces set up on a single instance does not cause any problem
as Open vSwitch has been properly designed to scale. Instead, the resulting topology (a sample
scenario is depicted in Figure 5.3) may cause network problems due to the creation of loops be-
tween hosts. This issue has been solved by developers of the Open vSwitch Quantum plugin by
defining, for the virtual switch that contains tunnels to other hosts, a set of flow rules that allows
the communication only between virtual machines network interfaces and tunnel endpoints and
vice versa. However, this solution does not apply to the Secure VM Containers extension, as
the network configuration defined for each Compute Node is slightly different: in the TClouds
solution, only one virtual switch is used to connect virtual machines network interfaces with
tunnel endpoints, instead of two.

For this reason, a different solution has been identified to avoid connection loops when using
the TClouds extension. It consists in avoiding that a packet sent by a virtual machine traverses
more than one tunnel segment through the definition of three rules that must be applied by
each host of the Cloud infrastructure. First, each tunnel endpoint is associated to a tunnel ID
(a 32 bit identifier defined in the header of GRE packets). Second, a tunnel endpoint labels
outgoing packets only if packets coming from another virtual switch port have tunnel ID set to
zero2. Finally, a tunnel endpoint accepts incoming packets from a tunnel endpoint only if their

2This condition is true only for packets sent by virtual machines.
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embedded tunnel ID is equal to the one associated to the remote endpoint. This association is
done by Quantum during the setup phase.

It becomes clear from Figure 5.3 why this set of rules allows to achieve the stated goal.
Consider, for example, the situation where a packet sent by a virtual machine running on HOST
1 in the Red TVD traverses more than one tunnel segment and reaches HOST 3 through HOST
2. The target host discards that packet because its tunnel ID differs from the one expected
(tunnel ID of HOST 2).

On the other hand, the packet sent by the VM running on HOST 1 reaches directly HOST 3
through the tunnel segment between the two hosts: this flow is not represented in Figure 5.3.

In conclusion, although the Open vSwitch Quantum plugin realizes a network topology
which likely contains loops, our agent implementation (the Libvirt Agent) ensures, as the same
as the original Open vSwitch Agent, that virtual machines communicate among themselves
properly, by allowing packets sent by a host to be transmitted only to the adjacent ones.
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Chapter 6

A Framework for Establishing Trust in Cloud
Provenance

Chapter Authors:
Imad M. Abbadi (OXFD)

6.1 Introduction

Cloud computing is relatively a new term in mainstream IT, first popularized in 2006 by Ama-
zon’s EC2[Ama10]. It has emerged from commercial requirements and applications [JNL].
Establishing trust in cloud architectures is an important subject that is yet to receive adequate
attention from both academia and industry [JNL, Abb11c, AFG+, Mic09]. Logging, auditing
and historical data are of tremendous importance for establishing trust in clouds. This data has
different usage, e.g. pro-active service delivery (incidents and security monitoring), billing,
error and forensic investigation. For convenience in this chapter we refer to this data as log
records. Almost all of clouds’ resources generate this data in some way. The importance of
such data and its usage is based on the following resource types. Physical resources generate
log records related to physical resource status, security and incident reporting. The generated
data helps in the direction of finding the cause of incidents and for security monitoring. Virtual
resources generate log records related to virtual resource status, security and incident reporting.
They also generate usage data, which are used for billing customers using IaaS clouds. Finally,
Application resources generate log records related to application resource status, security and
incident reporting. They also generate usage data that are used for billing customers using PaaS
and SaaS clouds.

Establishing trust in cloud systems (as we discussed in [Abb11b]) requires two mutually
dependent elements: (a) support infrastructures with trustworthy mechanisms and tools to help
cloud providers automate the process of managing, maintaining, and securing their systems
(what we referred to as self-managed services [Abb11a]); and (b) develop methods to help
cloud users and providers establish trust in the operational management of the infrastructure.
Our previous work ([AAM11]) focusses on both points (a and b); specifically, it establishes
offline chains of trust across the distributed elements of clouds physical infrastructure helping
self-managed services to securely exchange management data, and it provides a mechanism
enabling users to attest to the way clouds infrastructure is managed. The framework presented
in this chapter focusses on point (a) by supporting self-managed services with a trustworthy
provenance system. This chapter, in addition, extends our previous framework’s entities to be
provenance aware; i.e. establish offline chains of trust between cloud entities and the prove-
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nance system, collect log records from the distributed elements of clouds infrastructure, asso-
ciate important identification metadata with such records in clouds context, and securely push
the result to the proposed provenance system. The integrated framework helps in our long vision
of establishing trustworthy clouds.

6.1.1 Log and Provenance
Logs and provenance data are distinctly different. Logs provide a sequential history of actions
usually relating to a particular process. Provenance generally refers to information that ‘helps
determine the derivation history of a data product, starting from its original sources’ [SPG05].
Provenance goes beyond an individual application or a process and may refer to many pieces
of equipment as well as people. Throughout this chapter we refer to logs as being a source of
provenance, primarily because in cloud logs are used in combination for a similar purpose.

The provenance is provided on clouds through linking together log records, collected from
multiple resources, to provide the complete history of an event or result. cloud provenance, at
present, is associated with the following limitations [AL11]: the methods followed by clouds to
support provenance queries are basic and, in many cases, such methods are developed on an ad-
hoc basis by cloud system administrators using customized scripts to address a specific event.
In addition, current provenance mechanisms are object specific; i.e. they do not automate the
process of managing different log and audit files and linking dependent log and audit records
together. Current log and audit records are not reasonably protected, which in turn affects the
creditability of provenance in the cloud. Moreover, current cloud provenance mechanisms are
deployed and fully controlled by cloud providers; i.e. cloud users do not have control over such
mechanisms, and neither can they access log and audit records.

The identified limitations motivate the need to establish a trustworthy secure cloud prove-
nance, which we next discuss the complexities exposed in this.

6.1.2 Problem Description and Objectives
We believe that establishing trustworthy secure cloud provenance requires great efforts from
both academia and industry. One of the main reasons for the complexity of cloud provenance
is that it uses log records which are associated with the following issues: i) log records are not
properly managed and are dispersed amongst clouds complex and distributed infrastructure, e.g.
most of log records are scattered all around the infrastructure using unstructured and unrelated
text files; and ii) log records do not adhere to any standard format (this covers both the ones
generated by different processes and the ones generated by similar processes but from different
manufacturers). Also, such log records do not have semantics explaining the meaning of the
items of log records.

Provenance in clouds with the above problems is not practical considering clouds enormous
number of applications, complex infrastructure, and huge number of users. In addition, cloud
provenance is even much more complicated than traditional enterprises considering cloud dy-
namic nature [Abb11a, AN11]. The dynamic nature of clouds results in its desired properties,
e.g. resource consolidation, resilience, scalability and high availability; however, this dynamism
results in new challenges, e.g. building a logical sequence of events to investigate an incident
for any one application requires data from many sources, which include the application itself, all
logs for possible virtual resources that the application could have used, and logs of all physical
resources that virtual resources could have used. Administrators must then combine this data
correctly by identifying all time intervals when an application used a specific virtual resource,
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all possible time intervals when these virtual resources used physical resources and then all rel-
evant log files from all related resources. Collecting and combining data from these resources
is not easy or practical considering the potential scale of cloud systems. These, in turn, increase
insider threats in clouds and reduce its trustworthiness, which discourage critical infrastructures
to outsource their resources to public clouds.

We believe that the foundation of providing cloud provenance requires following key ele-
ments: i) establish semantics and standards of log records which enable the automated under-
standing of log records as generated by multiple processes; ii) store log records in a structured,
highly available, and centralized repository which enable provenance tools to easily and quickly
find log records, query them, and bind related events together; iii) provide security measures
for storing, querying, transferring, and managing log records; and iv) establish trust in the op-
eration of the processes managing log records which help end users to establish trust in cloud
provenance.

Providing trustworthy secure cloud provenance is a complex problem that requires lots of
efforts. This chapter focuses on point (iii) above. In order to clarify the overall picture and to
put the proposed scheme in context, the chapter also partially discusses points (ii and iv). In
addition to points i, ii, and iv this chapter does not cover the details of the following: a) a detailed
database management system design for supporting provenance application requirements, b)
a detailed design of the provenance application itself, c) policy management and enforcement
(e.g. log retention policy), d) detailed discussion about VM agents that manage provenance data
inside a VM (we only outlined one aspect of this, i.e. secure storage and transfer of provenance
data), e) protecting provenance data and domain credentials once decrypted in memory, and f)
key management.

6.1.3 Organization of the chapter
The chapter is organized as follows. Section 6.2 discusses related work and our contribution.
Section 6.3 introduces clouds structure and management services. Section 6.4 presents motivat-
ing scenarios. Section 6.5 discusses the management of provenance data and then extracts the
system requirements. Section 6.6 defines our proposed domain architecture. Section 6.7 iden-
tifies the software services and their functions. Section 6.8 provides our framework workflow.
Section 6.9 provides an informal threat analysis of the proposed workflow. Finally, we discuss
and conclude the chapter in Section 6.10.

6.2 Related Work and Contribution

The need for additional provenance information in cloud computing storage has been well es-
tablished by Muniswamy-Reddy et al. [MRMS10, MRMS09]. The authors have discussed the
requirements for adding data provenance to cloud storage systems and have analysed several
alternative implementations. This is in contrast to our work, which considers the entire cloud
infrastructure and proposes a framework for that. The use of provenance for fault tolerance has
also been proposed before for grid computing [CA08, Xu05]. One aim is to avoid common
modes of failure when attempting to use multiple composite web services. This work provides
useful motivation for the collection of provenance data, but the move to cloud computing re-
quires a new analysis of current problems in the collection of provenance data.

There are many promising tools which could be adapted for use in cloud environments.
Muniswamy-Reddy et al. [MRMS10, MRMS09] have already evaluated the use of PASS – the
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Provenance-Aware Storage System – for cloud provenance. Reilly and Naughton [RN09] have
proposed extending the Condor batch execution system to capture data on execution environ-
ments, machine identities, log files, file permissions and more. While there are significant new
challenges on a cloud infrastructure, the Provenance-Aware Condor system certainly collects
the right kind of provenance data.

The need to protect the security and privacy of applications’ log records has been discussed
in [HL09, HM08]. These papers primarily focus on protecting applications’ log records gener-
ated by virtual machines which are hosted at a specific physical machine. The authors identify
the importance of (but did not address) the distributed log management, as generated by dis-
tributed systems, and leave it as future work. clouds infrastructure is distributed and dynamic by
nature which necessitates the need of distributed log management which covers both application
and infrastructure management logs.

The authors could not find other related work which use logs as a source of provenance in
cloud environment neither they could find related work covering log management in distributed
systems. The idea of this research, in fact, is based on a real problem in clouds computing
(inherited from enterprise infrastructure, the predecessor of cloud computing). The research
problem does not have a practical solution at the time of writing1. Cloud providers currently
relies on security administrators to manually (supported with basic management tools and in
house scripts) perform the cloud provenance job. Trustworthy provenance is a key require-
ment for establishing trustworthy clouds’ self-managed services that support our global vision
of establishing trust in clouds. Our novel contribution in this chapter is about covering the foun-
dations of this topic; i.e. identify the requirements of cloud provenance, propose a provenance
framework, and address some of the identified requirements. In addition, the proposed prove-
nance framework extends our previous work ([AAM11]), which is also part of our contribution
to this chapter.

6.3 Cloud Structure and Management Services
Providing cloud provenance requires careful understanding of the cloud taxonomy and manage-
ment services. This section briefly summarizes our previous work in this direction ([Abb11a,
Abb11c]).

6.3.1 Cloud Structure
Cloud environment is composed of enormous resources, which are categorized based on their
types and deployment across cloud infrastructure. Cloud environment conceptually consists of
multiple intersecting layers as follows: i) Physical Layer — This layer represents the physical
resources which constitute cloud physical infrastructure; ii) Virtual Layer — This layer repre-
sents the virtual resources which are hosted by the Physical Layer; and iii) Application Layer —
This layer runs the applications of cloud’s customer which are hosted using the Virtual Layer.
We identify an entity Layer as the parent of the three Cloud layers. From an abstract level the
Layer contains Resources which join Domains (i.e. we have physical domain, virtual domain,
and application domain). A Domain resembles a container which consists of related resources.
Domain’s resources are managed following Domain defined policy. Domains that need to in-
teract amongst themselves within a layer join a Collaborating Domain (i.e. we have physical

1The author has more than 15 years of industrial expectance covering most technologies behind today’s cloud
infrastructure.
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collaborating domain, virtual collaborating domain, and application collaborating domain). A
Collaborating Domain controls the interaction between Domain members of the Collaborating
Domain using a defined policy. The nature of Resources, Domains, Collaborating Domains,
and their policies are layer specific. Domain and Collaborating Domains concepts help in
managing cloud infrastructure, and managing resources distribution and coordination in normal
operations and in incidents. Collaborating Domains communicate across cloud layers to serve
a collaborative customer application needs.

Cloud resources communicate in a well organised way, either horizontally and/or vertically
([Abb11c]). Horizontal communication is where cloud resources communicate as peers within
a layer, domain, or group. Vertical communication, on the other hand, is where cloud resources
communicate with other cloud resources in the same layer or another layer following a process
workflow in either an up-down or down-up direction.

Cloud resources are dynamic which means the following: a) a specific virtual resource
can be hosted at many different physical resources at different times according to a policy; b)
similarly a specific application resource can run on multiple virtual resources that are increased
or decreased based on load and a predefined policy controlling such behaviour (i.e. elasticity
property [Abb11a]); and c) from (a and b) we can conclude that a specific application can be
hosted under different physical servers.

6.3.2 Virtual Control Centre

This section outline part of Cloud’s virtual resource management (detailed discussion of which
can be found in previous work [Abb11a, Abb11c]). Currently there are many tools for manag-
ing Cloud’s virtual resources, e.g. vCenter [VMw12] and OpenStack [Ope]. For convenience
we call such tools using a common name Virtual Control Centre (VCC), which is a Cloud de-
vice2 that manages virtual resources and their interactions with physical resources using a set of
software agents. Currently available VCC software agents have many security vulnerabilities
and only provide limited automated management services (what we refer to as self-managed
services) [Abb11c]. For example, the management of Collaborating Virtual Domain and Col-
laborating Physical Domain is controlled manually by Cloud employees using VCC. VCC
manages the infrastructure by establishing communication channels with physical servers to
manage Cloud’s Virtual Machines (VMs). VCC establishes such channels by communicating
with the virtual machine manager running at each server. Such management helps in maintain-
ing the agreed service level agreement with customers.

Trust establishment requires automated self-managed services that can manage Cloud in-
frastructure (considering both user properties and infrastructure properties) with minimum hu-
man intervention [Abb11a]. VCC will play a major role in providing Cloud’s automated self-
managed services, which are mostly provided manually at the time of writing. In previous work
([Abb11a]) we focused on defining the functions of self-managed services. In this chapter we
propose a provenance framework which is a key requirement for having automated and trust-
worthy self-managed services. Provenance helps self-managed services to reason about the
changes across the distributed elements of Clouds; e.g. it helps such services to understand the
consequences of a decision and to realize the right action plan to be considered.

2VCC (as the case of OpenStack) could be deployed at a set of dedicated and collaborating devices that share
a common database to support resilience, scalability and performance.
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Figure 6.1: Provenance Scenario

6.4 Motivating Scenarios

We now discuss the importance of provenance in a Cloud using two simple example scenarios,
as illustrated in Figure 6.1. We assume that a Cloud provider has six physical servers PS1 to
PS6, and two physical domains L1 and L2. L1 is allocated physical servers PS1 to PS3, and
L2 is allocated physical servers PS4 to PS6. We also assume that the Cloud provider hosts an
application App. The Cloud provider creates a virtual domain V D1 in the virtual layer to run
App. V D1 is initially allocated a one virtual resource, V R1, to host App. V D1 is associated with
a policy allowing it to scale its resources when there is an increase in demand using resources
from physical domain L1.

Our first example demonstrates how a simple increase in load, and the corresponding re-
action from the Cloud, can result in a loss of provenance data. Assume the load on App has
dramatically increased, the following steps then apply: i) V D1 responds by instantiating a new
virtual resource V R2 replicating V R1 inside V D1; ii) now both V R1 and V R2 process App,
which are hosted using L1 — assume that V R1 is hosted by PS1 and V R2 is hosted by PS2; iii)
PS2 has hardware problems, which results in incorrect results being generated by App; iv) load
returns to normal and so V D1 downscales by removing V R2; and v) Cloud customers discover
the problem and call the Cloud provider. If the Cloud provider only examines the logs of files
generated by V R1 and PS1, then they will not find the root case of the problem or how to rectify
it.

Our second scenario focus on forensic provenance in the Cloud, as follow: i) a security
administrator reads the policy for V D1 and understands that App can only be hosted using L1

resource; ii) the administrator updates the V D1 policy to force V D1 to use L2 resources; iii)
the administrator then connects to L2 physical resources and finds out that V D1 resources are
running on PS4, meaning that App is hosted there. The security administrator connects to PS4

and indirectly extracts important information from App. PS4 logs this activity; and iv) The
administrator restores the original policy, which forces V D1 resources to switch back to L1.
If the Cloud provider only examines log files generated by L1 resources, then they will not
discover who performed the attack or, even worse, they might never discover that an attack has
happened in the first place. This is one of the main challenges that shows the importance of
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Figure 6.2: High Level Architecture of LaaS DBMS

provenance considering the complex Cloud infrastructure and enormous distributed resources.

6.5 Log Records Management and Requirements
In this section we outline a possible approach for managing log records (i.e. partially cover
point (ii) discussed in Section 6.1.2). Following that we identified the system requirements.

6.5.1 Database Design
As explained in Section 6.3, Cloud computing is composed of enormous processes running at
distributed and heterogeneous resources. Various processes communicate horizontally and/or
vertically amongst each other. Log records generated by such processes require experts in the
domain to interpret and establish relationships amongst them, especially they are stored in a
scatted log files. Our design objective is to address these problems and fulfil the following:

• Move log records from their originating distributed processes to a centralized repository,
as illustrated in Figure 6.2. By centralized we do not mean a single storage neither we
mean any restrictions on geographical locations. Specifically, we mean moving disperse
log records to a centralized provenance system, which we also refer to as Log as a Ser-
vice (LaaS). The LaaS should be protected against single points of failures, e.g. replicated
across different geographical locations such that each replica is supported by high avail-
ability infrastructure.

• The log records should be easily queried using standard mechanisms; e.g. ANSI SQL-92
[Dig92].

• Associate individual log records with metadata. The metadata associates items of log
records with labels which explain the original source of log records based on the out-
lined Cloud taxonomy. The metadata also establishes the relationship between different
log records in the Cloud. These help tracking log records considering both vertical and
horizontal communication channels amongst Cloud components, and, also, considering
Cloud dynamic nature.

Figure 6.2 illustrates a simplified schema design of LaaS database whereby we transfer and
store log records to a centralized LaaS repository. LaaS repository, for example, could be com-
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posed of a web-based log application supported by an appropriate distributed database manage-
ment system (DBMS) (e.g. Oracle RAC and DataGaurd [Ora11b]). We propose categorizing
log records into four parts, each is stored in a dedicated set of tables. Three categories cover the
three horizontal layers of Cloud taxonomy, while the last category for management tools’ log.
Each category is composed of two types of provenance data: i) log records and ii) a metadata
describing the details behind each item of log records in the context of the discussed Cloud
taxonomy. The transfer of the provenance data to the LaaS repository and the management of
the LaaS repository itself are controlled by trustworthy services which we cover in Section 6.7.

The LaaS DBMS is expected to be highly transactional with enormous size, considering the
huge number of elements of the Cloud. These properties require a careful distributed system
design that maintains reliability, eliminates any single point of failure, and maintains overall
high system performance. Such properties also necessitate a log retention policy controlling the
lifetime of log records (a retention policy should consider the type of log records, user require-
ments, and other legislative measures). It is outside the scope of this chapter to discuss these
important issues and the LaaS DBMS schema design in further details, and we are currently
working on a chapter supported by a prototype covering such details.

6.5.2 Security Requirements
The previous section outlines a simplified design of Cloud’s log records management. We now
identify the security requirements to transfer and manage such data, as follows (these are related
to our stated objectives in points (iii) and (iv) discussed in Section 6.1.2): i) provide assurance
measures to the LaaS that the log records are generated and transferred from their source by
trustworthy processes; ii) provide assurance to the LaaS that the metadata associated with each
item of the log records is correct; iii) Provide assurance measures to the processes which gen-
erate the log records that the Clouds’ management processes are trusted to provide the correct
metadata, and, in addition, the LaaS is trusted to protect the log records and the associated meta-
data; and iv) provide assurance measures to interested parties (e.g. Cloud customers, auditors,
and even Cloud providers) about the trustworthiness and reliability of the LaaS mechanism to
protect the log records and associated metadata. Subsequent sections focus on these points,
which cover our objectives discussed in Section 6.1.2.

6.5.3 Other Requirements and Device Properties
The above identified properties of the LaaS (i.e. enormous size and high transaction rates) and
the identified requirements (e.g. highly available and reliable system with no single point of
failure) necessitate careful design at the infrastructure and application levels, which we do not
cover in this chapter. LaaS, as a result, is expected to fully utilize multiple and redundant phys-
ical servers. Our proposed scheme requires the LaaS application to be installed and managed at
dedicated physical servers which are physically separate from the other Cloud resources. In ad-
dition, we require LaaS to be managed by a dedicated provenance security administrators who
do not manage the Cloud infrastructure, as illustrated in Figure 6.3. This is to enforce the sepa-
ration of duty principle and to not have same people who manage both the Cloud infrastructure
and the LaaS.

We require that physical layer’s devices are commercial off-the-shelf hardware enhanced
with trusted computing technology that incorporates a Trusted Platform Module (TPM), as
defined by the Trusted Computing Group (TCG) specifications [Tru07]. Trusted computing
systems are platforms whose state can be remotely tested, and which can be trusted to store
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Figure 6.3: Domains and Software Agents in Clouds Taxonomy

security-sensitive data in ways testable by a remote party. TCG is a wide subject and has been
discussed by many researchers; we will not address the details of TCG specifications in this
chapter for space limitations (see, for example, [Sad08] for further details about this subject).
The TCG specifications require each trusted platform (TP) to include an additional hardware
component, the TPM, to establish trust in that platform [Sad08]. TPM has protected storage and
protected capabilities. The entries of a TPM platform configuration registers (PCRs), where in-
tegrity measurements are stored, are used in the protected storage mechanism. This is achieved
by comparing the current PCR values with the intended PCR values stored with the data ob-
ject. If the two values are consistent, access is then granted and data is unsealed. Storage and
retrieval are carried out by the TPM.

6.6 Framework Domain Architecture
In this section we propose a LaaS domain architecture which forms the foundation for ad-
dressing the identified objectives. The architecture uses the dynamic domain concept which is
proposed in [AA08]. We start by defining the dynamic domain concept, and then discuss the
adaptation of such concept to architect the framework.

6.6.1 Dynamic Domain Concept
Definition 6.6.1 A Dynamic Domain represents a group of devices that need to securely share
a pool of content. Each dynamic domain has a unique identifier iD, a shared unique symmetric
key kD and a specific PKLd composed of all devices in the dynamic domain. kD is shared by
all authorized devices in a dynamic domain and is used to protect the dynamic domain content
whilst in transit. This key is only available to devices that are member of the domain. Thus
only such devices can access the pool of content bound to the domain. Each device is required
to securely generate for each dynamic domain a symmetric key kC , which is used to protect
the dynamic domain content when stored in the device. The dynamic domain protocols are
discussed in detail in [AA08].

6.6.2 Domain Architecture
The framework is composed of the following types of domains (see Figure 6.3): Log as a
Service Domain (LaaSD), Management Domain (MD), Collaborating Management Domain
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(CMD), Outsourced Domain (OD), and Collaborating Outsourced Domain (COD). We now
map these domains using the Cloud infrastructure taxonomy concept, which we summarize in
Section 6.3. An MD and CMD represent a Physical Domain and Collaborating Physical Domain
at the Physical Layer. An OD and COD represent a Virtual Domain and Collaborating Virtual
Domain at the Virtual Layer. LaaSD is composed of the LaaS-specific servers which hosts the
LaaS system.

As we discussed earlier, the proposed framework extends some of the functions provided in
our previous work ([AAM11]) to make them provenance aware. The previous work established
a trustworthy and controlled environment for the management of MD/CMD when hosting OD/-
COD. Subsequent sections identify the additional functions which we introduced at MD — to
simplify the proposed scheme, this chapter does not cover the integration of the provenance sys-
tem with OD, COD and CMD, as these will increase the complexity of the chapter and divert
the focus.

Definition 6.6.2 LaaS Domain (LaaSD): Consists of platforms that host Cloud LaaS applica-
tion. Section 6.5, outlines the design requirements of LaaSD’s hosting platforms. LaaSD has a
unique identifier ilaas, two shared unique keys klaas and klaas−cca, and a specific PKLlaas com-
posed of all devices in the LaaSD. klaas is used to protect log records when transferred within
LaaSD, while klaas−cca is used to protect log records when transferred from Cloud entities to
LaaSD (specifically, between cloud client agent and log client agent as will be explained latter).
The credentials of LaaSD are defined in Definitions 6.6.3, 6.6.4, 6.6.5 and 6.6.6. LaaSD is asso-
ciated with a provenance policy, which controls LaaSD behaviour and manages the provenance
data, e.g. data retention policy outlined in Section 6.5.

Definition 6.6.3 LaaSD identifier ilaas is a unique number that we use to identify LaaSD. It is
securely generated and protected by the TPM of VCC.

Definition 6.6.4 LaaSD key klaas is used to protect provenance data. klaas is a symmetric key
that is securely generated and protected by the TPM of VCC. klaas is not available in the clear,
it is shared between all devices member of LaaSD, and it can only be transferred from VCC to
a device when it joins the LaaSD.

Definition 6.6.5 LaaSD public key list (PKLlaas) is a LaaSD-specific list that is composed
of the public keys of all devices of LaaSD. Provenance administrators assign devices to each
LaaSD by providing each device public key to VCC in a form of PKL. The PKLlaas is securely
protected and managed by VCC.

Definition 6.6.6 LaaSD key klaas−cca (also called LCA-CCA key) is used to protect the prove-
nance data when transferred from Clouds’ distributed elements to LaaS provenance applica-
tion. klaas−cca is a symmetric key that is securely generated and protected by the TPM of VCC.
klaas−cca is not available in the clear, it is shared between devices member of LaaSD and MD,
and it can only be transferred from VCC to a device when the device joins MD or LaaSD.

Definition 6.6.7 Management Domain: MD represents a group of devices at the Physical
Layer. The capabilities of devices member of MD and their interconnections reflect the overall
properties of the MD. Such properties enable the MD to serve the part of user requirements
which can be matched only at the physical layer (e.g. location restrictions, resilience and scal-
ability properties). An MD has a policy which manages the behaviour of its members and
controls the behaviour of collaborating MDs, and, in addition, the policy controls the transfer
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Figure 6.4: Software Agents for Cloud Provenance and Management Services

of log records and the association of metadata to LaaSD from across the distributed elements
of Cloud infrastructure. The MD has credentials consisting of a unique identifier imd, a unique
symmetric key kmd, a public key list (PKLmd), and the shared LCA-CCA key provided by LaaSD,
which have similar definitions to those provided in Definitions 6.6.3, 6.6.4, 6.6.5 and 6.6.6 re-
spectively; however, i) MD is not managed by the provenance administrators, and ii) kmd is
used to protect infrastructure management data.

6.7 Framework Software Agents

The proposed framework architecture is composed of a set of software agents which are required
to implement the functions of the framework (see Figure 6.3 and 6.4). The software agents are
as follows: i) Cloud client agent (CCA), ii) Cloud server agent (CSA), iii) LaaS server agent
(LSA), iv) LaaS client agent (LCA), and v) virtual machine agent (VMA). In our previous
work ([AAM11]) we provided the required protocols for CCA and CSA which control the
management of OD/COD at MD/CMD. As we discussed earlier, the objectives of our previous
work are not the same as the objectives of this chapter which necessitate introducing changes
on CCA and CSA to provide an integrated framework. In the remaining part of this section we
discuss in details the functions of these agents, and the changes we introduced at CCA and CSA
to be provenance aware.

Assumption 6.7.1 We assume the identified software agents are designed in such a way that
they do not reveal domain credentials in the clear, do not transfer domain protection keys to
others, and do not transfer sensitive domain content unprotected to others. Although, this is a
strong assumption; however, recent research shows promises in the direction of satisfying such
an assumption [MLQ+10]. TCG compliant hardware using the sealing mechanism alone is
not enough to address such an assumption. Trustvisor ([MLQ+10]) moves one step forward
and focuses on protecting content encryption key utilizing recent development in processors
technology (e.g. Intel TXT); however, this does not protect clear text data once decrypted.
Achieving this is one of our long term objectives.
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6.7.1 Cloud Server Agent

CSA is a trusted management agent that runs at VCC, and has the following functions: a) install
CCA on physical devices excluding the ones related to LaaS servers (covered in [AAM11]); b)
manage MD/CMD policies and provenance policies; provenance policies provide assurance that
log records are securely generated and transferred to authorized entities (MD/CMD policies are
discussed in ([AAM11])). These policies also provide assurance that trustworthy metadata is
generated and associated with log records; c) establish offline chains of trust between Cloud en-
tities which include the following: i) CSA and CCA (covered in [AAM11]), and ii) collaborate
with LSA to establish chains of trust between CSA and LSA, and CCA and LCA; and d) create
and manage MD/CMD (the creation is covered in [AAM11], while the management lacks parts
of points b and c, as discussed above).

6.7.2 LaaS Server Agent

LSA is a trusted provenance agent which runs at VCC. LSA has the following functions: a)
install and manage LCA; b) manage provenance policies which provide assurance that prove-
nance data are only accessible to authorized entities and control provenance data retention; c)
establish offline chains of trust between provenance management agents (i.e. LSA and LCA),
and between provenance management agents and other agents (i.e. LSA and CSA, and CCA
and LCA); and d) create and manage LaaSD which includes the following: i) securely gener-
ating and storing LaaSD protection keys; ii) attesting to the execution environment status of
devices’ LCA whilst being added to the domain and ensuring they are trusted to execute as
expected; hence trusted to securely store the domain key and to protect domain content; and iii)
add and remove devices to a domain by releasing the domain-specific key to the LCA running
on devices joining the LaaSD.

6.7.3 LaaS Client Agent

LCA is a trusted provenance agent which runs at physical platform member of the LaaSD.
LCA has the following functions: a) intermediate the communication between CSA/CCA and
the provenance system, and between provenance security administrators and the provenance
system; b) assure verifiers that the provenance system operates in a trusted environment; i.e. can
access provenance data when its execution environment is trusted; and c) manage and enforce
organization policy related to the provenance operations as distributed by LSA.

6.7.4 VM Agent

The VM agent is a trusted agent running at all virtual machines which are organized into ODs
and CODs. The VM agent intermediates the communication between running processes inside
the virtual machine and CCA — this chapter only covers the secure storage of provenance data.
The VM agent attests to the execution status of all running processes inside the VM and ensures
that they are trusted to behave as expected. It then securely transfers the log records to CCA.
The CCA, as explained next, is in charge of adding and binding the metadata to log records and
then transferring the result to the LCA.
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6.7.5 Cloud Client Agent

CCA is a trusted client-management agent running at resources of a physical layer (excluding
the ones member of LaaSD). CCA has the following functions which are related to provenance
system (these are additional functions to the ones discussed in our previous work, [AAM11]):
a) enforce provenance policy as distributed by the LSA via the CSA; b) intermediate the com-
munication between all processes running at the physical platform and the LCA. Specifically, it
grabs the log records as forwarded from inside the VM and other processes in the hypervisor,
and then associates them with the required metadata. Subsequently, it sends the result to its
allocated LCA; and c) it sends its own log records (i.e. log records related to the management
of virtual resources at physical resources) to its allocated LCA.

6.8 Framework Workflow

This section discusses a possible workflow of the proposed system framework. The chapter
does not discuss OD/COD (i.e. it does not discuss VMs and the details of their agents), neither
it discusses applications’ provenance management. Discussing such details will drag us into
extra complexities that diverts the focus of the chapter. At this early stage of our work we
propose a set of protocols as a proof of concept with an informal security analysis. This is to
clarify how the framework components could possibly be managed. Once we proceed in this
work and address the identified challenges, we then need to provide a formal analysis in which
the proposed protocols would likely to be updated.

6.8.1 Cloud Server Agent Initialization

This section describes the procedure of initializing the CSA discussed in Section 6.7. Following
are the notations used in this section: TPM is the TPM on VCC; S is the platform state at release
as stored in the PCR inside the TPM; and (Pu, Pr) is a non-migratable key pair such that the
private part of the key Pr is bound to TPM, and to the platform state S. The following protocol
functions are defined in [Tru07]: TPMCreateWrapKey

, TPMLoadKey2, TPMSeal
, and TPMUnseal.

The main objective of initializing the CSA is to prepare it to implement the framework of the
proposed scheme. This includes the following: i) Cloud security administrators install the CSA
on VCC — the installation of the CSA includes generating a non-migratable key pair (Pr,Pu)
to protect domain secrets; and ii) the CSA manages security administrator(s) credentials and
securely stores them to be used whenever administrator(s) need to be authenticated to CSA.

The first time security administrators run the CSA it performs the following initialization
procedure (as described by algorithms 1). The objective of this algorithm is to initialize the
CSA. The CSA executes and sends a request to the VCC-specific TPM to generate a non-
migratable key pair, which is used to protect domain secrets. TPM then generates this key and
seals it to be used by the CSA when the hosting device execution status is trusted.

The CSA then needs to ensure that only security administrators can use the CSA. For this
the CSA instructs security administrators to provide their authentication credentials (e.g. pass-
word/PIN), as described by Algorithm 2. The objective of this algorithm is to enrol security
administrators into the CSA. The CSA then requests the TPM to store the authentication cre-
dentials of the Cloud security administrators associated with its trusted execution environment
state (i.e. the integrity measurement as stored in the TPM’s PCR) in the VCC protected stor-
age. We mean by storing data in a protected storage is ‘sealing data’ in TCG terms, so that
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data can only be accessed by the trusted server agent. The authentication credential is used to
authenticate security administrators before using the CSA; see Algorithm 3.

Given the definitions and the assumptions above, the protocol is described by algorithms
1, 2, and 3. The objective of the protocol is installing the server agent at VCC, which gen-
erates the non-migratable key to encrypt the CSA secrets. The protocols are used by security
administrators when interacting with the server agent.

Algorithm 1 CSA initialization
1. CSA→ TPM: TPMCreateWrapKey .

2. TPM: generates a non-migratable key pair (Pu, Pr).

Pr is bound to TPM, and to the required platform state S at release, as stored in the PCR inside the TPM.

3. TPM→ CSA: TPM_KEY12[Pu, Encrypted Pr, TPM_KEY_STORAGE, tpmProof=TPM (NON-MIGRATABLE), S, Auth_data]

Algorithm 2 Administrators registration
1. CSA→ Administrators: Request for security administrators authentication credentials.

2. CSA→ TPM: TPMLoadKey2(Pr).

Loads the private key Pr in the TPM trusted environment, after verifying the current PCR value matches the one associated with Pr (i.e. S). If the PCR value does not match S,
CSA returns an appropriate error message.

3. CSA→ TPM: TPMSeal(Authentication_Credential).

Algorithm 3 Authentication verification
1. CSA→ Administrators: Request for authentication credentials.

2. CSA→ TPM: TPMLoadKey2(Pr). TPM on CSA’s device loads the private key Pr in the TPM trusted environment, after verifying the current PCR value matches the one
associated with Pr (i.e. S). If the PCR value does not match S, CSA returns an appropriate error message.

3. CSA→ TPM: TPMUnseal(Authentication_Credential).

4. TPM: Decrypts the string Authentication_Credential and passes the result to CSA.

5. CSA: Authenticates the administrators using the recovered authentication credentials. If authentication fails, CSA returns an appropriate error message.

6.8.2 LaaS Server Agent Initialization
The process of initializing LSA exactly follows the same process and algorithms described
for initializing CSA in Section 6.8.1. The main differences are as follows: i) LaaS should
be managed by provenance security administrators who should not have access to the CSA.
Similarly, CSA security administrators should not have access to the LSA; ii) LaaS should have
its specific non-migratable key pair which is independent from CSA key pair; and iii) as we
outlined in Section 6.3.2, although both LSA and CSA run at VCC; however, this does not
mean that VCC is a single entity. It is most likely to be the opposite (as currently implemented,
for example, in OpenStack) has multiple different entities each could be allocated a specific
function for scalability, performance, and security reasons.

6.8.3 LCA and CCA Initialization
This section describes the procedure of initializing client agents, which could be LCA or CCA.
The goal of this procedure is to prepare devices to participate in Clouds. This covers generating
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a non-migratable key to protect important credentials at client devices.

The protocol of initializing a LCA and CCA is described by Algorithm 4. The objective of
this algorithm is to install a copy of the agent, which generates a non-migratable key to protect
device’s credentials. TPM, S and (Pu, Pr) have the same meanings provided earlier.

Algorithm 4 LCA Initialization — this equally applies to CCA initialization
1. LCA→ TPM: TPMCreateWrapKey .

2. TPM: generates a non-migratable key pair (Pu, Pr).

2. TPM→LCA: TPM_KEY12[Pu, Encrypted Pr, TPM_KEY_STORAGE, tpmProof=TPM (NON-MIGRATABLE), S, Auth_data]

6.8.4 LaaS Domain Establishment

In this section we discuss the procedure of establishing LaaSD, which are managed by the
LSA. In the provided protocol we use the same notations described earlier. In this subsection
we require that the LSA has already been installed and initialized, exactly as described earlier
in Section 6.8.2. This includes installing the LSA, which interacts with the TPM to generate
a non-migratable key pair that can be only used by the agent. This key pair is used to protect
LaaS secrets.

LaaSD establishment begins when provenance security administrators want to establish a
LaaSD. The administrators instruct the LSA to create a new LaaSD. The server agent authen-
ticates administrators as described by the Algorithm 3. If authentication succeeds the server
agent interacts with the TPM to securely generates the LaaS specific domain key klaas and iden-
tifier ilaas, and a specific key klaas−cca to be used to establish trusted channel between LCA and
CCA. These are described by Algorithm 5.

At the successful completion of this protocol LaaS credentials are initialized, which include
the domain key, the domain identifier, the LCA-CCA key and an empty PKL. These are pro-
tected by LSA running at VCC, which manages LaaSD membership.

Provenance security administrators assign selected physical devices to LaaSD based on the
devices properties that could fulfil the required overall LaaSD properties. As we discuss in
Section 6.8.5, the LSA securely transfers the domain credentials to joining log devices. It also
transfers the key klaas−cca associated with ilaas to the CSA. The CSA in turn transfers the key to
joining CCA (see Section 6.8.7), which would establish an offline chain of trust between CCA
and LCAs.
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Algorithm 5 LaaSD establishment
1. LSA→ TPM: TPMGetRandom .

TPM generates a random number to be used as a LaaSD key klaas .

2. TPM→ LSA: klaas

3. LSA→ TPM: TPMGetRandom .

TPM generates a random number to be used as a LCA-CCA key klaas−cca .

4. TPM→LSA: klaas−cca

5. LSA→ TPM: TPMGetRandom .

LSA generates a unique number to be used as LaaSD identifier ilaas .

6. TPM→LSA: ilaas

7. The LaaSD credentials klaas , ilaas , klaas−cca , and an empty PKLlaas are stored in VCC protected storage, and sealed to the LSA so that only the LSA can access these
credentials when its execution status is trusted. This is achieved as follows.

LSA→ TPM: TPMLoadKey2(Pr);

Loads the private key Pr in the TPM trusted environment to be used in the Sealing function, after verifying the current PCR value matches the one associated with Pr (i.e. S). If
the PCR value does not match S, LSA returns an appropriate error message.

LSA→ TPM: TPMSeal(klaas||ilaas||PKLlaas).

TPM securely stores the string klaas||ilaas||PKLlaas using the platform protected storage, such that they can only be decrypted on the current platform by LSA, and only
if the platform runs as expected (when the platform PCR values matches the ones associated with Pr, i.e. S).

6.8.5 Adding Devices to LaaSD

This section describes the process for adding a device to a LaaSD. Following notations are
used in the provided protocol: TPMLCA is the TPM of the device running the LCA; TPMLSA

is the TPM of the device running the LSA; SLCA is the platform state at release as stored
in the PCR inside the TPMLCA; SLSA is the platform state at release as stored in the PCR
inside the TPMLSA; (PuLCA, PrLCA) is non-migratable key pairs such that the private part of
the key PrLCA is bound to TPMLCA and to the platform state SLCA; (PuLSA, PrLSA) is non-
migratable key pairs such that the private part of the key PrLSA is bound to TPMLSA and to
the to the platform state SLSA; ilaas is LaaSD specific identifier; PKL is the LaaSD public key
list; klaas is the LaaSD-specific content protection key; klaas−cca is the LCA-CCA specific key
for protecting content transferred between CCA and LaaS and to establish trust between both
entities; CertLSA is the LSA device certificate; CertLCA is the joining LCA device certificate;
ALSA is an identifier for the LaaS server device included in CertLSA; ALCA is an identifier
for the LaaS client device included in CertLCA; PrLSA−AIK is the corresponding private key
of the public key included in CertLSA; PrLCA−AIK is the corresponding private key of the
public key included in CertLCA; N1 is a randomly generated nonce; N2 is a randomly generated
nonce; ePuLCA

(Y ) denotes the asymmetric encryption of data Y using key PuLCA, and where we
assume that the encryption primitive in use provides non-malleability, as described in [Int06];
and SHA1 is a one way hash function.

The LCA sends a join domain request to the LSA. This request includes the LaaSD specific
identifier ilaas this is achieved as follow.

LCA→LSA: Join_Domain
Two algorithms are then initiated to add the device to the domain. The first algorithm

involves the LaaS server and client agents to mutually authenticate each other conforming to
the three-pass mutual authentication protocol [Int98]. LSA sends an attestation request to LCA
to prove its trustworthiness, LCA then sends the attestation outcome to LSA. These steps are
achieved using Algorithm 6.

Adding a device into a domain uses Algorithm 7, which starts upon successful completion
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of Algorithm 6. The objective of Algorithm 7 is to securely transfer the key klaas and klaas−cca

to the LCA. Both keys are sealed on the device hosting the LCA, so that they are only released
to the LCA when its execution environment is as expected. If the execution status of the device
running LCA is trusted, LSA checks if the device’s public key is included in the public key
list of the domain. If so, it securely releases the domain specific key klaas and the LCA-CCA
specific key to LCA using Algorithm 7. The keys are sealed on LCA’s device, so that they are
only released to LCA when its execution environment is as expected.

Upon the successful completion of the above algorithms the LaaS client and server agents
establish a trusted secure communication channel that is used to transfer the LaaSD key and
policy to the LCA. The established secure channel, importantly, provides the assurance to the
LSA about the state of the client agent and forces the future use of the transferred key to the
agent on specific trusted state. The device hosting LCA is now part of the domain, as it possesses
a copy of the key klaas, and its public key matches the one stored in the server agent. Member
devices of the domain can access the domain log records which are now shared by all devices
member of the LaaSD.

Algorithm 6 LCA and LSA mutual authentication
1. LSA→ TPMLSA: TPMGetRandom .

2. TPMLSA →LSA: Generates a random number to be used as a nonce N1 .

3. LSA→ TPMLSA: TPMLoadKey2(PrLSA−AIK );

Loads the server agent hosting device AIK in the TPM trusted environment, after verifying the current PCR value matches the one associated with PrLSA−AIK .

4. LSA→ TPMLSA: TPMSign(N1).

5. TPMLSA→ LSA→LCA: N1||CertLSA||SignLSA(N1).

6. LCA: verifies CertLSA , extracts the signature verification key of LSA from CertLSA , and checks that it has not been revoked, e.g. by querying an OCSP service [MAM+99].
LCA then verifies message signature. If the verifications fail, LCA returns an appropriate error message.

7. LCA→ TPMLCA : TPMGetRandom .

8. TPMLCA →LCA: Generates a random number N2 that is used as a nonce.

9. LCA→ TPMLCA : TPMLoadKey2(PrLCA−AIK );

Loads the private key PrLCA−AIK in the TPM trusted environment, after verifying the current PCR value matches the one associated with PrLCA−AIK .

10. LCA→ TPMLCA : TPMCertifyKey (SHA1(N2||N1||ALSA||ilaas),PuLCA). TPMLCA attests to its execution status by generating a certificate for the key
PuLCA .

11. TPMLCA →LCA: N2||N1||ALSA||PuLCA||SLCA||ilaas|| SignLCA(N2||N1||ALSA||ilaas||PuLCA||SLCA).

12. LCA→LSA: N2||N1||ALSA||PuLCA||SLCA||ilaas||CertLCA|| SignLCA(N2||N1||ALSA||ilaas||PuLCA||SLCA).

13. LSA verifies CertLCA , extracts the signature verification key of LCA from the certificate, and checks that it has not been revoked, e.g. by querying an OCSP service. LSA then
verifies message signature, message freshness by verifying the value of N1 , and then verifies it is the intended recipient by checking the value of ALSA . LSA determines if
LCA is executing as expected by comparing the platform state given in SLCA with the predicted platform integrity metric. If these validations fail, then LSA returns back an
appropriate error message.
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Algorithm 7 Sealing LaaSD credentials to LCA
1. LSA→ TPMLSA: TPMLoadKey2(PrLSA).

TPM on LSA loads the private key PrLSA in the TPM trusted environment, after verifying the current PCR value matches the one associated with PrLSA (i.e. SLSA). If the
PCR value does not match SLSA , the server agent returns an appropriate error message.

2. LSA→ TPMLSA: TPMUnseal(klaas||klaas−cca||ilaas||PKL).

3. TPMLSA →LSA: decrypts the string klaas||klaas−cca||ilaas||PKL and passes the result to LSA.

4. LSA verifies ilaas matches the recovered domain identifier and PuLCA is included in the PKL. If so LSA encrypts klaas and klaas−cca using the key PuLCA as
follows ePuLCA

(klaas||klaas−cca).

5. LSA→ TPMLSA: TPMCertifyKey (SHA1(N2||ALCA||ePuLCA
(klaas||klaas−cca)),PuLSA).

6. TPMLSA →LSA: attests to its execution status by generating a certificate for the key PuLSA , and sends the result to LSA.

7. LSA→LCA: N2||ALCA||PuLSA||SLSA|| ePuLCA
(klaas||klaas−cca)||SignM (N2||ALCA||ePuLCA

(klaas||klaas−cca)||
PuLSA||SLSA).

8. The device LCA verifies message signature, it is the intended recipient by checking the value of ALCA , and verifies message freshness by checking the value of N1 . If
verifications succeed, LCA stores the string ePuLCA

(klaas||klaas−cca) in its storage.

6.8.6 Establishing Trust between Server Agents

Before establishing an MD domain we should first establish a chain of trust between both CSA
and LSA. This would help in establishing a transparent chain of trust between the CCA running
at each member device of MD and LCA that runs at each member device of LaaSD, as we dis-
cuss it latter. For clarity we do not assume that the LSA and CSAs are hosted at a single VCC (as
we indicated earlier VCC could be composed of multiple, but collaborating entities). Following
notations are used in the provided protocol: TPMLSA is the TPM of the device running the
LSA; TPMCSA is the TPM of the device running the CSA; SLSA is the platform state at release
as stored in the PCR inside the TPMLSA; SCSA is the platform state at release as stored in the
PCR inside the TPMCSA; (PuLSA, PrLSA) is non-migratable key pairs such that the private part
of the key PrLSA is bound to TPMLSA and to the platform state SLSA; (PuCSA, PrCSA) is non-
migratable key pairs such that the private part of the key PrCSA is bound to TPMCSA and to the
to the platform state SCSA; ilaas is LaaSD specific identifier; imd is MD domain specific identi-
fier; k is a specific shared key between Cloud and LSAs; CertCSA is the LSA device certificate;
CertLSA is the CSA device certificate; ACSA is an identifier for the LSA device included in
CertCSA; ALSA is an identifier for the CSA device included in CertLSA; PrCSA−AIK is the cor-
responding private key of the public key included in CertCSA; PrLSA−AIK is the corresponding
private key of the public key included in CertLSA; N1 is a randomly generated nonce; N2 is a
randomly generated nonce; ePuLSA

(Y ) denotes the asymmetric encryption of data Y using key
PuLSA, and where we assume that the encryption primitive in use provides non-malleability, as
described in [Int06]; and SHA1 is a one way hash function.

The LSA sends an establish trusted channel request to the CSA as follow.
LSA→CSA: Establish_Trusted_Channel
Two algorithms are then initiated to establish the trusted channel and to transfer manage-

ment data across. The first algorithm involves the LSA and CSA to mutually authenticate each
other conforming to the three-pass mutual authentication protocol [Int98]. The agents attest
each other to prove their trustworthiness. These steps are achieved using an algorithm which
is exactly the same as the one in 6. The second algorithm (Algorithm 8) starts upon successful
completion of Algorithm 6. The objective of this algorithm is to securely establish a shared key
k that can only be accessed by both agents when their execution status is as expected. Upon
the successful completion of the two algorithms the LSA and CSAs establish a trusted secure
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communication channel that is used to transfer the related provenance policy and other secret
data between both agents. In addition, such a trusted channel, as we discuss latter, would help
in establishing a transparent chains of trust between LCAs and CCAs. The established trusted
secure channel provides the assurance to both agents about their states and forces the future use
of the transferred key to be on specific trusted state. Next sections build on successful comple-
tion of the provided protocols when storing and querying log records, and when validating the
trustworthiness of the log management processes.

Algorithm 8 Sealing the LSA-CSA shared key to LSA/CSA server agents
1. Note that, and as indicated in the text, for this algorithm to make sense it must be read after the attestation algorithm to show the reader how both entities (i.e. LSA and CSA)

attest to each other execution environment and exchange their certificates.

2. CSA→ TPM: TPMGetRandom .

TPM generates a random number to be used as a shared key k.

3. TPM→ CSA: k

4. k is stored in CSA protected storage, and sealed to the CSA so that only the CSA can access the key when its execution status is trusted. This is achieved as follows.

CSA→ TPM: TPMLoadKey2(Pr);

Loads the private key Pr in the TPM trusted environment to be used in the Sealing function, after verifying the current PCR value matches the one associated with Pr (i.e. S). If
the PCR value does not match S, CSA returns an appropriate error message.

CSA→ TPM: TPMSeal(k).

TPM securely stores the key k using the platform protected storage, such that they can only be decrypted on the current platform by CSA, and only if the platform runs as expected
(when the platform PCR values matches the ones associated with Pr, i.e. S).

5. CSA then encrypts k using the key PuLSA as follows ePuLSA
(k).

6. CSA→ TPMCSA: TPMCertifyKey (SHA1(N2||ALSA||ePuLSA
(k)),PuCSA).

7. TPMCSA →CSA: attests to its execution status by generating a certificate for the key PuCSA , and sends the result to CSA.

8. CSA→ LSA: N2||ALSA||PuCSA||SCSA|| ePuLSA
(k)||SignCSA(N2||ALSA||ePuLSA

(k)|| PuCSA||SCSA).

9. LSA verifies message signature, it is the intended recipient by checking the value of ALSA , and verifies message freshness by checking the value of N1 . If verifications succeed,
LSA stores the string ePuLSA

(k)) in its storage.

As in the case of CSA, the key k can only be decrypted on the current platform by CSA, and only if the platform runs as expected.

6.8.7 MD establishment and Management
In this subsection we require that the CSA has already been installed and initialized, LaaSD has
been established, and a trusted channel between LSA and CSA has been established, exactly as
described earlier in Sections 6.8.1, 6.8.4, and 6.8.6, respectively. The establishment of an MD
follows similar steps to those provided in Algorithm 5 with the following changes: i) the CSA
does not generate the shared LCA-CCA key, it rather requests it from the LSA using the trusted
channel established in Algorithm 8; and ii) after the CCA receives this key, it securely stores
the key along with other MD credentials.

Adding a device to MD also follows similar steps to those provided in Algorithms 6 and 7
with the following changes: i) the mutual authentication protocol (Algorithms 6) needs to be
updated to establish a chain of trust between CSA and CCA rather than LSA and LCA; ii) a
chain of trust need to be established between LCA and CCA in Algorithm 7. This is trans-
parently established when CSA sends the shared LCA-CCA key to CCA (how this is achieved
is discussed in Section 6.10); iii) the CSA regularly receives changes related to provenance
management and policies from LSA using the trusted channel established in Algorithm 8; and
iv) the CSA (by collaborating with the LSA, as in point iii) sends to CCA the metadata to use
with the log records such as: physical device-id reflecting the CCA’s device identifier at VCC
database, MD-id the CCA is a member of, CMD-ids the MD is a member of, VMs that the CCA
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would manage, and the policy that controls how the CCA interacts with the LCA.

6.8.8 Secure Log Storage
In this section we discuss a possible approach for storing Cloud provenance data using the
proposed LaaSD. We, now, list the main steps for storing a log record generated by a process P
which is hosted at physical device D. Whenever a process P generates a log record, LOG, it
sends the LOG to the CCA running at D as follows:

1. P →CCA: LOG||APPID (where APPID is the process unique identifier which produces
the LOG)

The CCA, as discussed earlier, is assigned to a LaaSD and a pre-agreed shared CCA-LCA
specific key, klaas−cca. Such key can only be accessed by the assigned agents when their execu-
tion environment is as expected. We assume, for performance reasons, that the CCA and LCAs
keep such keys pre-loaded in memory (we assumed in Assumption 6.7.1 that a mechanism is in
place to protect sensitive data whilst being in memory). Loading such key is done as follows.

1. CCA→ TPM: TPMLoadKey2(Pr). TPM on D loads the private key Pr in the TPM trusted
environment, after verifying the current PCR value matches the one associated with Pr
(i.e. S). If the PCR value does not match S, CCA returns an appropriate error message.

2. CCA→ TPM: TPMUnseal(klaas−cca).

CCA associates additional metadata representing the virtual and physical layer details (i.e.
virtual domain id (VDID), virtual machine id (VMID), physical machine id (PHID), and physi-
cal domain id (PHDID)), and then encrypts the string using the shared key key klaas−cca. CCA
then sends the result to the LaaS agent as follows.

CCA→ LaaS: eklaas−cca
(LOG||APPID||VMID||V DID||PHID||PHDID)

As discussed above, we require that LaaS pre-loads the shared key klaas−cca. LaaS then
decrypts the string, and re-encrypts only the LOG field using the LaaSD specific key klaas as
follows.

1. LaaS → TPM: TPMLoadKey2(Pr). TPM on a LaaS device loads the private key Pr in
the TPM trusted environment, after verifying the current PCR value matches the one
associated with Pr (i.e. S). If the PCR value does not match S, LaaS returns an appropriate
error message.

2. LaaS → TPM: TPMUnseal(klaas||Klaas−cca).

3. LaaS decrypts the string eklaas−cca
(LOG||APPID||VMID||V DID||PHID||PHDID)

4. LaaS then encrypts the LOG field as follows: eklaas(LOG)

Finally, LaaS stores the encrypted LOG record and the extracted metadata in a set of tables
inside the provenance DBMS (identified in Section 6.5). We require that the LaaS DBMS
provides additional protection measures of the stored provenance data. Example of this is what
is known by Oracle Wallet [Ora11a]. In this the DBMS automatically stores the data encrypted
inside the DBMS. It is outside the scope of this chapter to discuss or analyze the process of
securely storing data inside the DBMS.
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6.9 Threat Analysis

In this section we informally analyse the threats, services and mechanisms for the provenance
framework workflow proposed in section 6.8. We focus on the threats, services and mechanisms
that apply to provenance and management data, and the MD and LaaSD domains’ credential.

Provenance and Cloud security administrators when interacting with the server agents run-
ning at VCC could violate their privileges by adding unauthorized devices to a domain or even
an unauthorized party could steal security administrators authentication credentials to add an
unauthorized device into a domain. The administrators authorization violation threat can be
mitigated by combining different measures, for example: (a) requiring that N out of M admin-
istrators successfully authenticate themselves directly to the VCC for request authorization; (b)
using logging and auditing mechanisms that could detect abnormalities in the system; and (c)
using the policy of separation of duty, for example, prevent administrators (both provenance
and Cloud) from accessing log files, which are routinely examined by auditors. The stealing
of administrators credentials, on the other hand, can be mitigated by using strong authentica-
tion measures which involve a combination of “something the administrator has" e.g. a smart
card; “the security administrator is", e.g. biometric verification; and/or “the security adminis-
trator knows", e.g. a password or PIN. At this foundation stage, the chapter does not cover the
implementation and enforcement of such mechanisms.

The server software agents running at VCC raise the following security threats when pro-
cessing and storing system credentials: unauthorized manipulation of system credentials during
use in the VCC, and/or unauthorized manipulation of system credentials whilst stored in the
VCC. The confidentiality and integrity protection of system credentials during execution in a
VCC requires process isolation techniques, in which software agents run in isolation, free from
being observed or compromised by other processes running in the same protected partition, or
by software running in any insecure partition. This chapter does not cover this point, however,
we assumed in Assumption 6.7.1 that such a protection mechanism is in place. The confiden-
tiality and integrity of system credentials whilst stored in the VCC requires protected storage
capabilities, as discussed in section 6.5.3 and Algorithm 5. The protected storage capabilities
uses TPM functions to protect domain credentials. TPM is tamper evident and so it is not easy
for the protected credentials to get hacked in normal circumstances. However, TPM cannot
protect itself from physical attacks and, in addition, domain keys could possibly be revealed
in different ways such as brute-force attack. Lessening the impact of such threats requires key
management. The Cloud policy makers decide on the key management policy (e.g. frequency
of refreshing domain keys, what should happen if a device is hacked, etc). In this chapter we do
not cover the key management part, neither we consider policy management and enforcement
mechanisms.

The interaction between a client software agent running on a device joining a domain and
the corresponding server software agent running at VCC raises the following threats to the cor-
responding domain key whilst in transit: unauthorized reading or alteration of the domain key
whilst in transit, the VCC wittingly/unwittingly sending the domain key to a malicious entity, a
device wittingly/unwittingly receiving the domain key from a malicious entity, and a replay of
communications between the VCC and the added device. The confidentiality and integrity of
the domain whilst in transit, as discussed in Section 6.8.5, is provided by the use of asymmet-
ric encryption where we assume that the encryption primitive in use provides non-malleability.
Entity authentication of a device to a VCC involves a protocol exchange between the device and
the VCC, as discussed in Algorithm 6. It is initiated when the VCC and the joining device mu-
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tually authenticate to each other. This mutual authentication attests to the scheme applications
execution status and whether the platform is trusted. By this the VCC can only communicate
with a trusted entity, and so cannot unwittingly send the domain key to a malicious entity. Simi-
larly, the device agent, if it is not operating properly, cannot get the domain key and so it cannot
wittingly send it to a malicious entity (see Algorithms 7 and 8). Similar discussion also applies
to entity authentication of a VCC to a device. Prevention of replay of communications between
a VCC and a device is provided by the inclusion of nonces in protocol messages (see Section
6.8.5).

Domain devices raise the following threats to the processing and storage of the domain key
and content: unausthorized reading or alteration of the domain key during use in the device,
unauthorized reading or alteration of the domain key whilst stored in the device, unauthorized
reading or alteration of content during use in the device, and unauthorized reading or alter-
ation of content whilst stored in the device. The confidentiality and integrity of the domain key
during execution on a device is covered in Assumption 6.7.1 as discussed above for the VCC.
The confidentiality and integrity of the domain key whilst stored in a device, as discussed above,
does not only require protected storage capabilities but also key and policy management and
enforcement mechanisms. The confidentiality and integrity of domain content during execution
on a device follows the same discussion as of the point of protecting the domain key during
execution in the device. The confidentiality and integrity of domain content is protected by en-
crypting it using the domain key whilst stored on a device where we assume that the encryption
primitive in use provides authenticated encryption. The encryption key is bound to the device’s
trusted environment, as discussed in Section 6.8.8.

6.10 Discussion, Future Directions, and Conclusion

6.10.1 Establishing Trust

In this part we discuss the foundation of trust establishment between different CloudâĂŹs en-
tities. A client or a verifier (which could, for example, be a Cloud customer, Cloud employee,
or a third party) needs to assess the trustworthiness of a running application in the Cloud. This
includes assessing the trustworthiness of a Cloud to manage the infrastructure and the prove-
nance system. If the result is positive, the verifier can then trust the operation of Clouds and
would only need to assess the trustworthiness of the running application. We now discuss how
the proposed framework goes in this direction in more details — it is outside the scope of this
chapter to go in the details of trust measurement.

As we discussed earlier one of the responsibilities of LSA is to establish a trustworthy
LaaSD to manage the provenance data of Cloud elements. The first step is to install LCAs
at carefully selected log-specific devices. LSA then verifies the trustworthiness of LCA and
assures users about the trustworthy behaviour of LCA when managing the LaaSD. In other
words, untrusted LCA will automatically be evicted from managing the LaaSD. Thus, a verifier
only needs to measure and then assess the trustworthiness of LSA. If trusted, the verifier can
then implicitly assume that LCA (which is managed by LSA) is trusted to manage the LaaSD.
Assessing the trustworthiness of LSA is not enough by itself. This is because the operation of
Clouds infrastructure (e.g. hosting of billing application) is managed by the CSA and CCA,
while the log records is managed by LSA and LCA. Therefore, a verifier would also need to
measure and then verify the trustworthiness of the CSA as well as the LSA. As in the case of
assessing the trustworthiness of log management, a verifier does not need to measure and assess
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the trustworthiness of the CCA. It is rather the opposite as the verifier should not, indeed, get
involved into understanding complexities of Cloud infrastructure [AN11]. As in the case of
LSA, one of the key functions of the CSA is to assure users that only trustworthy CCA can
manage Cloud infrastructure and untrusted agents will automatically be evicted from the MD.

A chain of trust is also required between both CCA and LSA, which is provided based on
the above chains of trust, as follows: i) we established a chain of trust between LSA and LCA;
ii) we established a chain of trust between LSA and CSA; and iii) we established a chain of
trust between CSA and CCA. Using these chains of trust, we transparently established a chain
of trust between CCAs and LCAs.

To conclude, a verifier should not (read as must not) get involved into understanding the
details of Cloud infrastructure. The identified chains of trust help in this direction, as a verifier
only needs to attest to the trustworthiness of the requested application and the VCC which runs
both the LSA and CSA.

6.10.2 Achievement of Objectives
Section 6.1.2 identifies four key requirement for trustworthy secure Clouds provenance which
we now discuss the ones covered in this chapter. We partially address requirement (ii) as fol-
lows: a) provide a high level design of a provenance system which is built on distributed DBMS
engine; b) associate each item of log record with a metadata identifying the recorded log in con-
text of Cloud taxonomy; and c) identify the provenance system requirements. We covered re-
quirement (iii) as follows: a) establish LaaSD which manages the secure sharing of provenance
data between LaaSD member devices; b) update our previous work on Cloud infrastructure
management ([AAM11]) to associate provenance metadata with log records; and c) integrate
our previous work with this chapter framework enabling the secure transfer of log records from
their originating processes to the log repository. The previous subsection discusses how we
partially cover point (iv) which is related to trust management — more work are still needed on
this point which is related to trust evaluation in Clouds.

Section 6.8.8 provides a possible approach of how the integrated framework could possibly
work. However, this is not enough by itself to assure provenance data integrity and confiden-
tiality whilst being stored and processed within the LaaSD. For example, this chapter do not
discuss key management, policy management and protecting sensitive data whilst being pro-
cessed. These are complex subjects, especially in Cloud context, to be covered in this chapter.

6.10.3 Conclusion
This chapter proposes a framework for trustworthy Cloud’s provenance. Cloud provenance is
a key requirement to establish the foundation for providing trust in the Cloud. Establishing
trust in the Cloud requires trustworthy self-managed services that can automatically and with
minimal human intervention manage Cloud users’ resources at the Cloud infrastructure. Such
self-managed services require trustworthy Cloud provenance as it helps in taking the right ac-
tion on changes and incidents. Cloud provenance has many additional advantages, e.g. a key
requirement in forensic investigation. This chapter does not provide an exhaustive secure frame-
work neither we provide a formal security analysis of the framework. For example, we do not
cover key management neither we cover database security subjects. This is because discussing
such topics is a whole area of research in Clouds context.
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Appendix A

Specification of the functional layer of the
TrustedServer management protocol

AnyType := volatile type *

Array := volatile type 1

Boolean := volatile type 3

Integer := volatile type 4

String := volatile type 14

ByteArray := volatile type 15

Binary := volatile AnyType

Identifier := volatile type 16

Timestamp := volatile type 17

IPv4 := volatile type 18

IPv4withNetwork := volatile type 19

ASN1Encoded := volatile type 21

PublicKey := volatile ASN1Encoded

Certificate := volatile ASN1Encoded

CertificateChain := volatile [ Certificate ]

AES128Key := volatile ByteArray

AES128Encrypted := volatile ByteArray

RSAEncrypted := volatile ByteArray
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SHA256CheckSum := volatile ByteArray

CodebookEntry := volatile type 22

Color := volatile ByteArray

Priority := volatile enum( lower, medium, higher, highest )

ExchangeMode := volatile enum( main, aggressive )

Cipher := volatile enum( 3des, aes128, aes256, blowfish, ←↩
cast )

Hash := volatile enum( sha1, sha256, sha512 )

DHGroup := volatile enum( modp768, modp1024, modp1536,
modp2048, modp3072, modp4096, modp6144, modp8192 )

Network::TraceRouteExecution := job(
-> object(

ip -> IPv4
ttl -> Integer
delay? -> Integer

)
) : ()

VirtualNetwork::PeerServer := object(
id -> Identifier
ip? -> IPv4
policy -> NetworkPolicy::PolicyReference
priority -> Priority
internetAccess -> Boolean

)

VirtualNetwork::PeerNetwork := object(
id -> Identifier
network? -> ( IPv4withNetwork | [ IPv4 ] | IPv4 )
servers? -> [ IPv4 ]
policy? -> NetworkPolicy::PolicyReference
priority -> Priority
internetAccess -> Boolean

)

VirtualNetwork::Peer := object(
id -> Identifier
networks -> [ VirtualNetwork::PeerNetwork ]
servers -> [ VirtualNetwork::PeerServer ]
trustedNetworks? -> [ IPv4withNetwork ]
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ip? -> IPv4
serial? -> ( Integer | [ Integer ] )

)

VirtualNetwork::Network := object(
id -> Identifier
tvd -> SecurityPolicy::TVDReference
peers -> [ VirtualNetwork::Peer ]
internetNat? -> Boolean
if "defined internetNat then one of these" (

internetRoutingIPs -> [ IPv4 ]
internetRoutingPeer -> ref VirtualNetwork::Peer.id

)
)

SecurityPolicy::TVDDescriptor := object(
id -> Identifier
name -> String
color -> Color
validityPeriod? -> Integer

)

SecurityPolicy::TVDReference := ref ←↩
SecurityPolicy::TVDDescriptor.id

SecurityPolicy::TVD := SecurityPolicy::TVDDescriptor + object(
ikeSettings? -> object(

identity -> CertificateStore::Handle
ca -> CertificateStore::Handle
exchangeMode -> ExchangeMode
cipher? -> Cipher
hash -> Hash
dhGroup -> DHGroup
pfsGroup? -> DHGroup
lifetime -> Integer

)
)

SecurityPolicy::IFConstraint := abstract object(
id -> Identifier
type -> CodebookEntry

)

SecurityPolicy::AskUserConstraint
:= SecurityPolicy::IFConstraint < "askUser" >

SecurityPolicy::VirusCheckConstraint
:= SecurityPolicy::IFConstraint < "checkVirus" >
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SecurityPolicy::CheckUserConstraint
:= SecurityPolicy::IFConstraint < "checkUser" > + object(
users -> [ User::UserReference ]

)

SecurityPolicy::IFPermission := object(
id -> Identifier
constraints -> [ ( SecurityPolicy::AskUserConstraint

| SecurityPolicy::VirusCheckConstraint
| SecurityPolicy::CheckUserConstraint ) ]

)

SecurityPolicy::InformationFlow := object(
id -> Identifier
source -> SecurityPolicy::TVDReference
target -> SecurityPolicy::TVDReference
permissions -> [ SecurityPolicy::IFPermission ]

)

Appliance::ClientState := volatile object(
timestamp -> Timestamp
compartments? -> [ Compartment::CompartmentState ]

)

Appliance::ServerState := volatile object(
timestamp -> Timestamp

)

CertificateStore::Handle := Binary

CertificateStore::Entry := object(
reference -> CertificateStore::Handle
certificateChain? -> CertificateChain
publicKey? -> PublicKey
persistent -> Boolean

)

CertificateStore::CertificateStore := job(
<- generateKeyPair( object(

algorithm -> enum( rsa )
bits -> Integer
persistent -> Boolean

) ) : CertificateStore::Entry
<- addCertificateChain( object(

reference? -> CertificateStore::Handle
certificateChain -> CertificateChain
persistent -> Boolean
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) ) : CertificateStore::Handle
-> CertificateStore::Entry
-> ()

) : ()

NetworkPolicy::ICMPType := Integer

NetworkPolicy::Rule := object(
priority -> Priority
protocol -> enum( icmp, tcp, udp )
if "protocol == icmp" (

types? -> [ NetworkPolicy::ICMPType ]
) else (

port -> Integer
endPort -> Integer

)
direction -> enum( inbound, outbound, bidirectional )

)

NetworkPolicy::Policy := object(
id -> Identifier
rules -> [ NetworkPolicy::Rule ]

)

NetworkPolicy::PolicyReference := ref NetworkPolicy::Policy.id

Debug::PTYExecution := job(
<> ByteArray
<- object(

width -> Integer
height -> Integer

)
) : ()

NetworkDNSD::Entry := object(
hostname -> String
ip -> IPv4

)

Firmware::PackageUUID := ref Firmware::Package.uuid

Firmware::InstallationState := enum( ready, downloadFailed, ←↩
invalidFile )

Firmware::InstallExecution := job(
<- object(

uuid -> Firmware::PackageUUID
key -> AES128Encrypted < AES128Key >
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url -> String
)

-> Firmware::InstallationState
<- object(

uuid -> Firmware::PackageUUID
key -> AES128Encrypted < AES128Key >
size -> Integer

)
<- ByteArray
-> Firmware::InstallationState

) : Boolean

Firmware::Version := object(
label -> String
revision -> Integer
firmware -> String
release -> String

)

TimeSynchronizer::TimeSynchronizer := job(
<> Timestamp

) : ()

DiskImage::DiskImage := object(
size -> Integer
sha256? -> SHA256CheckSum
id -> Identifier
name -> String

)

DiskImage::DownloadExecution := job(
<- ByteArray

) : ()

Compartment::Template := object(
id -> Identifier
name -> String
description -> String
image -> DiskImage::DiskImage
tvd -> SecurityPolicy::TVDReference
nat -> Boolean
dhcpd? -> object(

dns? -> [ IPv4 ]
domain? -> String

)
dnsd? -> object(

hostnames? -> [ NetworkDNSD::Entry ]
dns? -> [ IPv4 ]
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)
priority -> Priority
recommendations -> object(

memory -> Integer
cpus -> Integer
videoMemory -> Integer
operatingSystem -> enum( defaults, windows5 )

)
)

Compartment::TemplateReference := ref Compartment::Template.id

Compartment::Host := object(
id -> Integer
name -> String
serial -> String

)

Compartment::HostReference := ref Compartment::Host.id

Compartment::Compartment := object(
id -> Identifier
name -> String
template -> Compartment::TemplateReference
if "template.nat == false" (

ip -> [ IPv4 ]
)
hosts -> [ Compartment::HostReference ]
user -> ref Server::User.id
shares? -> [ ( Server::SSHFSShare | ←↩

Server::AnonymousWebDavShare ) ]
)

Compartment::Reference := ref Compartment::Compartment.id

Compartment::CompartmentState := object(
id -> Compartment::Reference
status -> enum( running, stopped )

)

Client::Protocol := object(
name -> String
versions -> [ Integer ]

)

Client::ClientHello := volatile object(
currentFirmware -> Firmware::Version
protocol -> Client::Protocol
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supportedFeatures -> [ String ]
timestamp -> Timestamp
installationEncryptionKey -> PublicKey
attachmentIdentifier? -> String

)

Client::RejectReason := enum( factoryReset, detach,
authorizationPending )

Client::ServerHello := volatile object(
currentFirmware -> Firmware::Version
protocol -> Client::Protocol
supportedFeatures -> [ String ]
timestamp -> Timestamp
rejectReason? -> [ Client::RejectReason ]

)

Client::OnlineConfiguration := volatile object(
intranet -> [ IPv4withNetwork ]
manager -> object(

hosts -> [ ( IPv4 | String ) ]
signatures -> [ CertificateStore::Handle ]

)
timestamp -> Timestamp
events -> object(

enableUnknown -> Boolean
)
system -> ManagedClient::System
virtualNetworks -> [ VirtualNetwork::Network ]
securityPolicy -> object(

tvds -> [ SecurityPolicy::TVD ]
informationFlows -> [ SecurityPolicy::InformationFlow ]

)
networkPolicies -> [ NetworkPolicy::Policy ]
compartmentConfiguration -> object(

templates -> [ Compartment::Template ]
compartments -> [ Compartment::Compartment ]

)
)

Client::Root := job(
-> Client::ClientHello
<- Client::ServerHello
<- detachManager( Boolean ) : ()
-> Appliance::ClientState
<- Appliance::ServerState
<- pty( object(

folder -> String
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command -> String
arguments? -> String

) ) : Debug::PTYExecution
<- timeSynchronizer() : TimeSynchronizer::TimeSynchronizer
<- configure( Client::OnlineConfiguration ) : ()
<- install( RSAEncrypted < AES128Key > ) : ←↩

Firmware::InstallExecution
<- certificateStore() : CertificateStore::CertificateStore
-> eventManager() : Events::EventManager
-> startUserSession( object(

username -> String
password -> String

) ) : Server::UserSession
-> downloadDiskImage( object(

image -> ref DiskImage::DiskImage.id
resumeSHA256? -> SHA256CheckSum
resumePosition? -> Integer

) ) : DiskImage::DownloadExecution
<- reboot() : ()
<- traceRoute( IPv4 ) : Network::TraceRouteExecution
<- legacyStatus() : String
<- legacySyslog( Integer ) : String
<- legacyExecute( String ) : String
<- legacyTunnelList() : String
<- legacyTunnelDetails( String ) : String

) : ()

ManagedClient::System := object(
id -> Identifier
name -> String
company -> Identifier
serial -> String

)

Events::ObjectReference := volatile Integer

Events::EventManager := job(
<- Integer
-> object(

company -> ref ManagedClient::System.company
appliance -> ref ManagedClient::System.id

)
-> object(

sequenceNumber -> Integer
timestamp -> Timestamp
source -> CodebookEntry
type -> Integer
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arguments -> Array < ( String | ←↩
Events::ObjectReference ) >

)
) : ()

TrustedChannel::RemoteAttestation := volatile Binary < ←↩
PublicKey >

User::User := object(
id -> Identifier
name -> String
mail? -> String

)

User::UserReference := ref User::User.id

Server::Share := abstract object(
id -> Identifier
name -> String
type -> CodebookEntry

)

Server::SSHFSShare := Server::Share + object(
hostname -> String
path -> String

)

Server::AnonymousWebDavShare := Server::Share + object(
hostname -> String
path -> String

)

Server::User := object(
id -> Identifier
name -> String
expireDate? -> Integer
hosts -> [ Compartment::Host ]
tvds -> [ SecurityPolicy::TVDDescriptor ]
templates -> [ Compartment::Template ]
compartments -> [ Compartment::Compartment ]

)

Server::Reason := enum( noSuchUser, disabled, expired )

Server::UserSession := job(
<- Server::User
-> createCompartment( object(

template -> Compartment::TemplateReference
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name -> String
) ) : Compartment::Reference

-> copyCompartment( object(
compartment -> Compartment::Reference
name -> String

) ) : Compartment::Reference
-> renameCompartment( object(

compartment -> Compartment::Reference
name -> String

) ) : Boolean
-> deleteCompartment( Compartment::Reference ) : Boolean
-> addCompartment( object(

compartment -> Compartment::Reference
host -> Compartment::HostReference

) ) : Boolean
-> removeCompartment( object(

compartment -> Compartment::Reference
host -> Compartment::HostReference

) ) : Boolean
) : Server::Reason

Server::Server :=
TrustedChannel::RemoteAttestation < "identityKey", ←↩

Client::Root >
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